zoukankan      html  css  js  c++  java
  • Coxph model Pvalue Select

    I am calculating cox propotional hazards models with the coxph 
    function from the survival package.  My data relates to failure of 
    various types of endovascular interventions.  I can successfully 
    obtain the LR, Wald, and Score test p-values from the coxph.object, as 
    well as the hazard ratio as follows: 

    formula.obj = Surv(days, status) ~ type 
    coxph.model = coxph(formula.obj, df) 
    fit = summary(coxph.model) 
    hazard.ratio = fit$conf.int[1] 
    lower95 = fit$conf.int[3] 
    upper95 = fit$conf.int[4] 
    logrank.p.value = fit$sctest[3]  (Score (logrank) test)

    wald.p.value = fit$waldtest[3]  (Wald test)

    lr.p.value = fit$logtest[3]    ----    Likelihood ratio test (优先)



    I had intended to report logrank P values with the hazard ratio and CI 
    obtained from this function.  In one case the P was 0.04 yet the CI 
    crossed one, which confused me, and certainly will raise questions by 
    reviewers.  In retrospect I can see that the CI calculated by coxph is 
    intimately related to the Wald p-value (which in this specific case 
    was 0.06), so this would appear to me not a good strategy for 
    reporting my results (mixing the logrank test with the HR and CIs from 
    coxph). 

    I can report the Wald p-values instead, but I have read that the Wald 
    test is inferior to the score test or LR test.  My questions for 
    survival analysis jockeys out there / TT: 

    1. Should I just stop here and use the wald.p.value?  This appears to 
    be what Stata does with the stcox function (albeit Breslow method). 

    2. Should I calculate HR and CIs that "agree" with the LR or logrank 
    P?  How do I do that? 

    Thank you, 

  • 相关阅读:
    js判断undefined类型
    js replace 全部替换
    第五次作业--原型设计
    第三次作业--团队展示
    第二次作业——数独终盘
    软件工程实践2017第一次作业
    课堂作业2
    课堂作业1
    第四次作业 计算器第二步
    第三次作业
  • 原文地址:https://www.cnblogs.com/xiaojikuaipao/p/10563718.html
Copyright © 2011-2022 走看看