zoukankan      html  css  js  c++  java
  • 代码笔记-OpenCV3-计算机视觉-python语言实现(第二版)

    1.基本I/O脚本

      1.1图片读取

     1 import time
     2 
     3 num = 2-1-3+3
     4 print(num)
     5 # 打开显示图像
     6 if num == 1:
     7     # 读取图像,支持 bmp、jpg、png、tiff 等常用格式
     8     img = cv2.imread(r"D:UIAUTO	rainingSetsimpleGeometricFigure1.jpg")
     9     # 创建窗口并显示图像
    10     cv2.namedWindow("Image")
    11     cv2.imshow("Image", img)
    12     # 刷新窗口
    13     cv2.waitKey(0)
    14     # 释放窗口
    15     cv2.destroyAllWindows()
    cv2读取图片

      1.2图像与原始字节之间转换

     1 # 2.1.2 图像与原始字节之间的转换
     2 # 随机生成两个图像,他们位于脚本所在的目录,图像名为RandomGray.png 和 RandomColor.png.
     3 if num == 2-1-2:
     4     randomByteArray = bytearray(os.urandom(120000))
     5     flatNumpyArray = numpy.array(randomByteArray)
     6 
     7     grayImage = flatNumpyArray.reshape(300, 400)
     8     cv2.imwrite('RandomGray.png', grayImage)
     9     bgrImage = flatNumpyArray.reshape(100, 400, 3)
    10     cv2.imwrite('RandomColor.png', bgrImage)
    图像与原始字节之间的转换

      1.3使用numpy.array访问图像数据

     1 # 2.1.3 使用numpy.array访问图像数据
     2 if num == 2-1-3+1:
     3     img = cv2.imread(r"D:UIAUTO	rainingSetsimpleGeometricFigure1.jpg")
     4     # 将jpg图像在左上宽50高50区域像素,处转化为红色像素
     5     for a in range(0, 50):
     6         for b in range(0, 50):
     7             img[a, b] = [2, 3, 255]
     8     cv2.imwrite("1.jpg", img)
     9 
    10     # item(x,y,通道索引0-2)
    11     print("x:49 y:49 R:", img.item(49, 49, 0))
    12     print("x:49 y:49 G:", img.item(49, 49, 1))
    13     print("x:49 y:49 B:", img.item(49, 49, 2))
    14 
    15     # 把区域像素设置为白色,不改变读入的图片像素
    16     for x in range(0, 50):
    17         for y in range(0, 50):
    18             img.itemset((x, y, 0), 250)
    19             img.itemset((x, y, 1), 250)
    20             img.itemset((x, y, 2), 250)
    21     cv2.imwrite("21.jpg", img)
    访问图像数据

      1.4像素变换

    1 # 像素变换
    2 # 这种变化速度优于上面的循环变换
    3 if num == 2-1-3+2:
    4     img = cv2.imread(r"D:PythonWorkspacedeep leanrvenv21.jpg")
    5     img[0:200:1, 0:200:1, 1] = 2
    6     cv2.imwrite('22.jpg', img)
    7     time.sleep(2)
    像素变换

      1.5图像区域拷贝

     1 # 图像区域拷贝
     2 if num == 2-1-3+3:
     3     img = cv2.imread(r'D:PythonWorkspacedeep leanrvenv18151.jpg')
     4     my_roi = img[0:100:1, 0:100:1]
     5     img[300:400:1, 300:400:1] = my_roi
     6     cv2.namedWindow("Image")
     7     cv2.imshow("Image", img)
     8     cv2.waitKey(0)  # 刷新时间
     9     cv2.destroyAllWindows()  # 释放窗口
    10     print(img.shape)  # 返回一个数组: [宽度,高度,通道数]
    11     print(img.size)  # 像素大小
    12     print(img.dtype)  # 图像的数据类型
    图像区域拷贝

    2.视频I/O与捕获摄像头帧

      2.1视频读取

     1 import cv2
     2 
     3 
     4 # I/O视频文件
     5 if num == 1:
     6     videoCapture = cv2.VideoCapture('MyInputVid.avi')
     7     fps = videoCapture.get(cv2.CAP_PROP_FPS)
     8     size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),
     9             int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
    10             )
    11     videoWriter = cv2.VideoWriter('MyOutputVid.avi', cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size)
    12     success, frame = videoCapture.read()
    13     while success:  # Loop until there are no more frames.
    14         videoWriter.write(frame)
    15         success, frame = videoCapture.read()
    视频文件读取

      2.2捕获摄像头的帧,写入磁盘

     1 if num == 2:
     2     cameraCapture = cv2.VideoCapture(0)
     3     fps = 30  # an assumption
     4     size = (
     5         int(cameraCapture.get(cv2.CAP_PROP_FRAME_WIDTH)),
     6         int(cameraCapture.get(cv2.CAP_PROP_FRAME_HEIGHT))
     7     )
     8     videoWriter = cv2.VideoWriter('MyOutputVid.avi', cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size)
     9 
    10     success, frame = cameraCapture.read()
    11     numFrameRemaining = 10 * fps - 1
    12     while success and numFrameRemaining > 0:
    13         videoWriter.write(frame)
    14         success, frame = cameraCapture.read()
    15         numFrameRemaining -= 1
    16     cameraCapture.release()
    捕获摄像头的帧

      2.3在窗口显示摄像头帧,按键盘大部分键位关闭窗口

     1 # 在窗口显示摄像头帧
     2 # waitKey()的参数为等待键盘触发的时间, 单位为毫秒, 其返回值是-1(表示没有键被按下)或ASCLL码.
     3 # 另外,python提供了一个标准函数ord(), 该函数可以将字符转换为ASCLL码. 例如, 输入ord('a')会返回97
     4 
     5 # OpenCV的窗口函数和waitKey()函数互相依赖.OpenCV的窗口只有在调用waitKey()函数时才会更新, waitKey()函数只有在OpenCV
     6 # 窗口成为活动窗口时,才能捕获输入信息.
     7 
     8 # 鼠标回调函数setMouseCallback()有五个参数, 如前面的实列代码所示.param为可选参数,
     9 # 它是setMouseCallback()函数的第三个参数, 默认情况下, 该参数是0. 回调事件参数可以取如下的值, 他们分别对应不同的鼠标事件.
    10 #   cv2.EVENT_MOUSEMOVE: 该事件对应鼠标移动
    11 #   cv2.EVENT_LBUTTONDOWN: 鼠标左键按下
    12 #   cv2.EVENT_RBUTTONDOWN: 鼠标右键按下
    13 #   cv2.EVENT_MBUTTONDOWN: 鼠标中间键按下
    14 #            _LBUTTONUP: 鼠标左键松开
    15 #            _RBUTTONUP:
    16 #            _MUBTTONUP:
    17 #            _LBUTTONDBLCLK: 双击鼠标左键
    18 #            _RBUTTONDBLCLK:
    19 #            _MBUTTONDBLCLK:
    20 # 鼠标回调的标志参数可能是一下事件的按位组合
    21 #   cv2.EVENT_FLAG_LUBTTON: 该事件对应按下鼠标左键
    22 #   cv2.EVENT_FLAG_RBUTTON: 该事件对应按下鼠标右键
    23 #   cv2.EVENT_FLAG_MBUTTON: 该事件对应按下鼠标中间键
    24 #            _FLAG_CTRLKEY: 按下Ctrl键
    25 #            _FLAG_SHIFTKEY: 按下Shift键
    26 #            _FLAG_ALTKEY: 按下Alt键
    27 # 然而,OpenCV不提供任何处理窗口事件的方法. 例如, 当单击窗口的关闭按钮时, 并不能关闭应用程序.
    28 # 由于OpenCV有限的事件处理能力和GUI处理能力, 许多开发人员更喜欢将OpenCV集成到其他应用程序框架中.
    29 if num == 3:
    30     clicked = False
    31     def onMouse(event, x, y, flags, param):
    32         global clicked
    33         if event == cv2.EVENT_LUBTTONUP:
    34             clicked = True
    35     cameraCapture = cv2.VideoCapture(0)
    36     cv2.namedWindow('MyWindow')
    37     cv2.setMouseCallback('MyWindow', onMouse)
    38 
    39     print('Showing camera feed. Click window or press any key to stop')
    40     success, frame = cameraCapture.read()
    41     while success and cv2.waitKey(1) == -1 and not clicked:
    42         cv2.imshow('MyWindow', frame)
    43         success, frame = cameraCapture.read()
    44 
    45     cv2.destroyWindow('MyWindow')
    46     cameraCapture.release()
    按键关闭窗口

    GitHub代码示例地址:

  • 相关阅读:
    Git 简要教程
    SDK更新失败问题解决
    常用安卓操作
    MongoDB本地安装与启用(windows 7/10)
    windows 快捷键收集
    windows 常用命令
    Lambda Expression Introduction
    对 load_breast_cancer 进行 SVM 分类
    Support Vector Machine
    使用 ID3 对 Titanic 进行决策树分类
  • 原文地址:https://www.cnblogs.com/xiaoxu-xmy/p/10589528.html
Copyright © 2011-2022 走看看