zoukankan      html  css  js  c++  java
  • CF1464F My Beautiful Madness 解题报告

    CF1464F My Beautiful Madness解题报告:

    更好的阅读体验

    题意

    给定一个 (n) 个结点的树,你需要维护一个路径的可重集。一共会进行 (m) 次操作,每次支持加入/删除一条路径,或者是查询可重集内所有路径的 (d) 邻域是否有交。

    (1leqslant nleqslant 2 imes 10^5,2leqslant mleqslant 2 imes 10^5)

    分析

    性质题。

    直接求交信息过于复杂,考虑找到一个点满足其包含在交内的概率必然最高。

    我们发现这个点是所有路径的 ( ext{lca}) 最深点的 (d) 级祖先(设其为 (p)),如果 (p) 不在某条路径的 (d) 邻域中的话,那么 ( ext{lca}) 最深的路径的 (d) 邻域一定与这条路径无交。

    于是我们用一个 ( ext{multiset}) 维护一下这个位置,考虑怎么判断它是否在交中。

    我们取出 (p)(d) 级祖先 (q),那么在 (q) 子树外的路径一定不包含 (p),我们用一个树状数组维护一下树上差分就可以了。

    (q) 内的路径最靠近 (p) 的位置一定是它的 ( ext{lca}),于是我们维护一下子树内当前所有关键点的直径就好了。

    时间复杂度 (O((n+q)log n))

    代码

    注意细节,实际上代码还是比较容易实现的。

    #include<stdio.h>
    #include<vector>
    #include<set>
    #define lc(x) (x)<<1
    #define rc(x) (x)<<1|1
    #define lowbit(x) x&(-x)
    #define inf 1000000000
    using namespace std;
    const int maxn=200005,maxt=maxn<<2,maxk=21;
    int n,m,euls,dfns;
    int st[maxn<<1][maxk],eul[maxn],lg[maxn<<1],dep[maxn],L[maxn],R[maxn],tt[maxn],fore[maxn][maxk],cnt[maxn];
    vector<int>v[maxn];
    multiset< pair<int,int> >s;
    void dfs(int x,int last){
    	eul[x]=++euls,st[euls][0]=x,L[x]=++dfns;
    	dep[x]=dep[last]+1,fore[x][0]=last;
    	for(int i=1;i<=20;i++)
    		fore[x][i]=fore[fore[x][i-1]][i-1];
    	for(int i=0;i<v[x].size();i++)
    		if(v[x][i]!=last)
    			dfs(v[x][i],x),st[++euls][0]=x;
    	R[x]=dfns;
    }
    inline int calc(int a,int b){
    	return dep[a]<dep[b]? a:b;
    }
    inline int lca(int a,int b){
    	a=eul[a],b=eul[b];
    	if(a>b)
    		swap(a,b);
    	int k=lg[b-a+1];
    	return calc(st[a][k],st[b-(1<<k)+1][k]);
    }
    inline int dis(int a,int b){
    	if(a==-1||b==-1)
    		return -inf;
    	int c=lca(a,b);
    	return dep[a]+dep[b]-2*dep[c];
    }
    int getkth(int x,int k){
    	for(int i=0;i<=20&&x!=1;i++)
    		if((k>>i)&1)
    			x=fore[x][i];
    	return x;
    }
    void tupdate(int x,int v){
    	for(int i=x;i<=n;i+=lowbit(i))
    		tt[i]+=v;
    }
    int tquery(int x){
    	int res=0;
    	for(int i=x;i;i-=lowbit(i))
    		res+=tt[i];
    	return res;
    }
    struct node{
    	int x,y,len;
    }t[maxt];
    node merge(node p,node q){
    	if(p.x==-1)
    		return q;
    	if(q.x==-1)
    		return p;
    	node res=p.len>q.len? p:q;
    	int a=dis(p.x,q.x),b=dis(p.x,q.y),c=dis(p.y,q.x),d=dis(p.y,q.y);
    	if(a>res.len)
    		res=node{p.x,q.x,a};
    	if(b>res.len)
    		res=node{p.x,q.y,b};
    	if(c>res.len)
    		res=node{p.y,q.x,c};
    	if(d>res.len)
    		res=node{p.y,q.y,d};
    	return res;
    }
    inline void pushup(int now){
    	t[now]=merge(t[lc(now)],t[rc(now)]);
    }
    void build(int l,int r,int now){
    	t[now]=node{-1,-1,-inf};
    	if(l==r)
    		return ;
    	int mid=(l+r)>>1;
    	build(l,mid,lc(now)),build(mid+1,r,rc(now));
    }
    void modify(int l,int r,int now,int p,int x,int w){
    	if(l==r){
    		if(w==1)
    			t[now]=node{x,x,0};
    		if(w==0)
    			t[now]=node{-1,-1,-inf};
    		return ;
    	}
    	int mid=(l+r)>>1;
    	if(p<=mid)
    		modify(l,mid,lc(now),p,x,w);
    	else modify(mid+1,r,rc(now),p,x,w);
    	pushup(now);
    }
    node query(int l,int r,int now,int L,int R){
    	if(L<=l&&r<=R)
    		return t[now];
    	int mid=(l+r)>>1;
    	if(L<=mid&&mid<R)
    		return merge(query(l,mid,lc(now),L,R),query(mid+1,r,rc(now),L,R));
    	if(L<=mid)
    		return query(l,mid,lc(now),L,R);
    	return query(mid+1,r,rc(now),L,R);
    }
    int main(){
    	scanf("%d%d",&n,&m);
    	for(int i=1;i<n;i++){
    		int x,y;
    		scanf("%d%d",&x,&y);
    		v[x].push_back(y),v[y].push_back(x);
    	}
    	dfs(1,1);
    	lg[0]=-1;
    	for(int i=1;i<=euls;i++)
    		lg[i]=lg[i>>1]+1;
    	for(int i=1;i<=20;i++)
    		for(int j=1;j+(1<<i)-1<=euls;j++)
    			st[j][i]=calc(st[j][i-1],st[j+(1<<(i-1))][i-1]);
    	build(1,n,1);
    	while(m--){
    		int t,x,y,z;
    		scanf("%d%d",&t,&x);
    		if(t==1){
    			scanf("%d",&y),z=lca(x,y);
    			tupdate(L[x],1),tupdate(L[y],1),tupdate(L[z],-1);
    			s.insert(make_pair(dep[z],z));
    			if(cnt[z]==0)
    				modify(1,n,1,L[z],z,1);
    			cnt[z]++;
    		}
    		if(t==2){
    			scanf("%d",&y),z=lca(x,y);
    			tupdate(L[x],-1),tupdate(L[y],-1),tupdate(L[z],1);
    			s.erase(s.lower_bound(make_pair(dep[z],z)));
    			cnt[z]--;
    			if(cnt[z]==0)
    				modify(1,n,1,L[z],z,0);
    		}
    		if(t==3){
    			y=getkth(s.rbegin()->second,x),z=getkth(y,x);
    			if(tquery(R[z])-tquery(L[z]-1)!=s.size()){
    				puts("No");
    				continue;
    			}
    			node res=query(1,n,1,L[z],R[z]);
    			puts((dis(y,res.x)<=x&&dis(y,res.y)<=x)? "Yes":"No"); 
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    Java中间件:淘宝网系统高性能利器(转)
    淘宝的数据库拆分(TDDL)(转)
    java web几种开发模式(转)
    C++模板【转】
    set[c++]
    C# jsonhelper
    Vector[C++]
    list[C++]
    map[C++]
    C[泊车管理系统]
  • 原文地址:https://www.cnblogs.com/xiaoziyao/p/15248925.html
Copyright © 2011-2022 走看看