参考链接
如何计算模型以及中间变量的显存占用大小:
https://oldpan.me/archives/how-to-calculate-gpu-memory
如何在Pytorch中精细化利用显存:
https://oldpan.me/archives/how-to-use-memory-pytorch
torchsummary库打印信息:
https://blog.csdn.net/andyL_05/article/details/109266862
计算方式
模型权重及中间变量显存占用计算:
# 模型显存占用监测函数
# model:输入的模型
# input:实际中需要输入的Tensor变量
# type_size 默认为 4 默认类型为 float32
def modelsize(model, input, type_size=4):
para = sum([np.prod(list(p.size())) for p in model.parameters()])
print('Model {} : params: {:4f}M'.format(model._get_name(), para * type_size / 1000 / 1000))
input_ = input.clone()
input_.requires_grad_(requires_grad=False)
mods = list(model.modules())
out_sizes = []
for i in range(1, len(mods)):
m = mods[i]
if isinstance(m, nn.ReLU):
if m.inplace:
continue
out = m(input_)
out_sizes.append(np.array(out.size()))
input_ = out
total_nums = 0
for i in range(len(out_sizes)):
s = out_sizes[i]
nums = np.prod(np.array(s))
total_nums += nums
print('Model {} : intermedite variables: {:3f} M (without backward)'
.format(model._get_name(), total_nums * type_size / 1000 / 1000))
print('Model {} : intermedite variables: {:3f} M (with backward)'
.format(model._get_name(), total_nums * type_size*2 / 1000 / 1000))
显存占用追踪工具
https://github.com/Oldpan/Pytorch-Memory-Utils
import gc
import datetime
import pynvml
import torch
import numpy as np
class MemTracker(object):
"""
Class used to track pytorch memory usage
Arguments:
frame: a frame to detect current py-file runtime
detail(bool, default True): whether the function shows the detail gpu memory usage
path(str): where to save log file
verbose(bool, default False): whether show the trivial exception
device(int): GPU number, default is 0
"""
def __init__(self, frame, detail=True, path='', verbose=False, device=0):
self.frame = frame
self.print_detail = detail
self.last_tensor_sizes = set()
self.gpu_profile_fn = path + f'{datetime.datetime.now():%d-%b-%y-%H:%M:%S}-gpu_mem_track.txt'
self.verbose = verbose
self.begin = True
self.device = device
self.func_name = frame.f_code.co_name
self.filename = frame.f_globals["__file__"]
if (self.filename.endswith(".pyc") or
self.filename.endswith(".pyo")):
self.filename = self.filename[:-1]
self.module_name = self.frame.f_globals["__name__"]
self.curr_line = self.frame.f_lineno
def get_tensors(self):
for obj in gc.get_objects():
try:
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
tensor = obj
else:
continue
if tensor.is_cuda:
yield tensor
except Exception as e:
if self.verbose:
print('A trivial exception occured: {}'.format(e))
def track(self):
"""
Track the GPU memory usage
"""
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(self.device)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
self.curr_line = self.frame.f_lineno
where_str = self.module_name + ' ' + self.func_name + ':' + ' line ' + str(self.curr_line)
with open(self.gpu_profile_fn, 'a+') as f:
if self.begin:
f.write(f"GPU Memory Track | {datetime.datetime.now():%d-%b-%y-%H:%M:%S} |"
f" Total Used Memory:{meminfo.used / 1000 ** 2:<7.1f}Mb
")
self.begin = False
if self.print_detail is True:
ts_list = [tensor.size() for tensor in self.get_tensors()]
new_tensor_sizes = {
(type(x), tuple(x.size()), ts_list.count(x.size()), np.prod(np.array(x.size())) * 4 / 1000 ** 2)
for x in self.get_tensors()}
for t, s, n, m in new_tensor_sizes - self.last_tensor_sizes:
f.write(f'+ | {str(n)} * Size:{str(s):<20} | Memory: {str(m * n)[:6]} M | {str(t):<20}
')
for t, s, n, m in self.last_tensor_sizes - new_tensor_sizes:
f.write(f'- | {str(n)} * Size:{str(s):<20} | Memory: {str(m * n)[:6]} M | {str(t):<20}
')
self.last_tensor_sizes = new_tensor_sizes
f.write(f"
At {where_str:<50}"
f"Total Used Memory:{meminfo.used / 1000 ** 2:<7.1f}Mb
")
pynvml.nvmlShutdown()
追踪检测
import torch
import inspect
from torchvision import models
from gpu_mem_track import MemTracker # 引用显存跟踪代码
device = torch.device('cuda:0')
frame = inspect.currentframe()
gpu_tracker = MemTracker(frame) # 创建显存检测对象
gpu_tracker.track() # 开始检测
cnn = models.vgg19(pretrained=True).to(device) # 导入VGG19模型并且将数据转到显存中
gpu_tracker.track()