zoukankan      html  css  js  c++  java
  • 24点破解的Java实现


    一、基本思想


    要想计算24点游戏的结果,则必须要采用基于搜索的算法(即穷举法)对每种情况进行遍历,我们怎么样才能遍历所有的情况呢?其实我们只要总结一下,还是有规律可以找的。

    输入a、b、c、d,组成a Op1 bOp2 c Op3 d的表达式,其中先算哪个子表达式未知,一共有5种计算方式,如下图所示:

             

     
    此时如果要实现该程序,需要存储5棵树,为了能够使得存储量达到最小,通过分析,其实总的来说,只需要存储2棵树即可,即:

    其他树都是冗余的,因为我们可以通过a、b、c、d的交换,比如((a+(b*c))+d)可以变为(((b*c)+a)+d);
    对于每棵树来说,abcd的可能性为4*3*2*1=24;op1op2 op3的可能性为4*4*4=64,因此总个数为1536,而两棵树的总个数为3072。因此只需要穷举这些方法,就可以知道结果。

    TfUtils类为实现穷举24点所有可能情况的类,calculate函数用于计算,参数a、b、c、d分别为给定的4个数,而TfUtils类中的expr属性为求解的表达式。


    二、代码实现


    CalculatorUtils.java

    package org.xiazdong;
    
    import java.util.Stack;
    
    public class CalculatorUtils {
    
    	/**
    	 * 计算后缀表达式
    	 */
    	public static String calculateReversePolish(String str) {
    
    		String[] splitStr = str.split(" ");
    		Stack<String> s = new Stack<String>();
    		for (int i = 0; i < splitStr.length; i++) {
    			String ch = splitStr[i];
    			if (ch.matches("\\d+.\\d+")||ch.matches("\\d+")) {
    				s.push(ch);
    			} else {
    				if (s.size() >= 2) {
    					String c1 = s.pop();
    					String c2 = s.pop();
    					if (ch.equals("+")) {
    						if(c1.contains(".")||c2.contains(".")){
    							s.push(String.valueOf((Double.parseDouble(c2 + "") + Double
    								.parseDouble(c1 + ""))));
    						}
    						else{
    							s.push(String.valueOf((Integer.parseInt(c2 + "") + Integer
    									.parseInt(c1 + ""))));
    						}
    						
    					} else if ("-".equals(ch)) {
    						if(c1.contains(".")||c2.contains(".")){
    						s.push(String.valueOf((Double.parseDouble(c2 + "") - Double
    								.parseDouble(c1 + ""))));
    						}
    						else{
    							s.push(String.valueOf((Integer.parseInt(c2 + "") - Integer
    									.parseInt(c1 + ""))));
    						}
    					} else if ("*".equals(ch)) {
    						if(c1.contains(".")||c2.contains(".")){
    						s.push(String.valueOf((Double.parseDouble(c2 + "") * Double
    								.parseDouble(c1 + ""))));
    						}
    						else{
    							s.push(String.valueOf((Integer.parseInt(c2 + "") * Integer
    									.parseInt(c1 + ""))));
    						}
    					} else if ("/".equals(ch)) {
    						s.push(String.valueOf((Double.parseDouble(c2 + "") / Double
    								.parseDouble(c1 + ""))));
    					}
    
    				} else {
    					System.out.println("式子有问题!");
    					return null;
    				}
    			}
    		}
    		return s.pop();
    	}
    }
    

    TfUtils.java


    package org.xiazdong;
    
    import java.io.Serializable;
    
    public class TfUtils implements Serializable{
    	private int result;
    	private String expr = "";	//存放中缀表达式
    	
    	public String getExpr() {
    		return expr;
    	}
    
    	public void setExpr(String expr) {
    		this.expr = expr;
    	}
    
    	/*
    	 					(操作符1)
    	 					/ 	   \ 
    	 			   (操作符2) (操作数4) 
    	 		       /     \ 
    	          (操作符3)  (操作数3) 
    	           /     \ 
    	      (操作数1) (操作数2)
    	 */
    	private int tree1[] = new int[7];; // 存放第一棵树
    	//private int tree2[]; // 存放第二棵树
    	private final int PLUS = 1; // 加
    	private final int MINUS = 2; // 减
    	private final int MULT = 3; // 乘
    	private final int DIV = 4; // 除
    
    	/**
    	 * 计算24点的主函数
    	 */
    	public void calculate(int a, int b, int c, int d) {
    
    		int data[] = { a, b, c, d };
    
    		
    		// 1.用数组构建一棵树,其中0,1,3处填操作符;2,4,5,6填充操作数
    		// 2.按照参数a,b,c,d不同顺序填充树,+-*/也填充
    		for (int h = 0; h < 4; h++) {
    			for (int i = 0; i < 4; i++) {
    				if (i == h) {
    					continue;
    				}
    				for (int j = 0; j < 4; j++) {
    					if (j == i || j == h) {
    						continue;
    					}
    					for (int k = 0; k < 4; k++) {
    						if (k == h || k == i || k == j) {
    							continue;
    						}
    						tree1[2] = data[h];
    						tree1[4] = data[i];
    						tree1[5] = data[j];
    						tree1[6] = data[k];
    
    						// 填充操作符
    						for (int m = PLUS; m <= DIV; m++) {
    							for (int n = PLUS; n <= DIV; n++) {
    								for (int o = PLUS; o <= DIV; o++) {
    									tree1[0] = m;
    									tree1[1] = n;
    									tree1[3] = o;
    									String t[] = new String[4];
    									for (int z = 0; z < 4; z++) {
    										switch (tree1[z]) {
    										case PLUS:
    											t[z] = "+";
    											break;
    										case MINUS:
    											t[z] = "-";
    											break;
    										case MULT:
    											t[z] = "*";
    											break;
    										case DIV:
    											t[z] = "/";
    											break;
    										}
    									}
    
    									// 目前为止tree数组全部已赋值
    									String postexpr = tree1[5] + " " + tree1[6]
    											+ " " + t[3] + " " + tree1[4] + " "
    											+ t[1] + " " + tree1[2] + " " + t[0];
    									String result = CalculatorUtils
    											.calculateReversePolish(postexpr);
    									if (Double.parseDouble((result)) == 24.0) {
    										expr = "(((" + tree1[5] + t[3] + tree1[6]
    												+ ")" + t[1] + tree1[4] + ")"
    												+ t[0] + tree1[2] + ")";
    										System.out.println(expr);
    										return;
    									}
    								}
    							}
    						}
    					}
    				}
    			}
    		}
    		//tree2 = new int[7];
    		for (int h = 0; h < 4; h++) {
    			for (int i = 0; i < 4; i++) {
    				if (i == h) {
    					continue;
    				}
    				for (int j = 0; j < 4; j++) {
    					if (j == i || j == h) {
    						continue;
    					}
    					for (int k = 0; k < 4; k++) {
    						if (k == h || k == i || k == j) {
    							continue;
    						}
    						tree1[3] = data[h];
    						tree1[4] = data[i];
    						tree1[5] = data[j];
    						tree1[6] = data[k];
    
    						// 填充操作符
    						for (int m = PLUS; m <= DIV; m++) {
    							for (int n = PLUS; n <= DIV; n++) {
    								for (int o = PLUS; o <= DIV; o++) {
    									tree1[0] = m;
    									tree1[1] = n;
    									tree1[2] = o;
    									String t[] = new String[3];
    									for (int z = 0; z < 3; z++) {
    										switch (tree1[z]) {
    										case PLUS:
    											t[z] = "+";
    											break;
    										case MINUS:
    											t[z] = "-";
    											break;
    										case MULT:
    											t[z] = "*";
    											break;
    										case DIV:
    											t[z] = "/";
    											break;
    										}
    									}
    									// 目前为止tree数组全部已赋值
    									String postexpr = tree1[4] + " " + tree1[3]
    											+ " " + t[1] + " " + tree1[6] + " "
    											+ tree1[5] + " " + t[2] + " " + t[0];
    									String result = CalculatorUtils
    											.calculateReversePolish(postexpr);
    									if (Double.parseDouble((result)) == 24.0) {
    										expr = "((" + tree1[3] + t[1] + tree1[4]
    												+ ")" + t[0] +"("+tree1[5]
    												+ t[2] + tree1[6] + "))";
    										System.out.println(expr);
    										return;
    									}
    								}
    							}
    						}
    					}
    				}
    			}
    		}
    		expr = "无解";
    	}
    
    	public int getResult() {
    		return result;
    	}
    
    	public void setResult(int result) {
    		this.result = result;
    	}
    
    
    	
    }
    

    测试代码:

    TfUtils tf = new TfUtils();
    tf.calculate(d1, d2, d3, d4);
    System.out.println(tf.getExpr());

    输入为:3,3,7,7

    输出为:(((3/7)+3)*7)





  • 相关阅读:
    获取浏览器当前宽高
    获取当前页面一个 CSS 像素与一个物理像素之间的比率
    获取对象的所有属性,不管是否可遍历,不管是自身的还是原型链上的
    获取当前页面内所有框架窗口
    获取当前页面视口(viewport)宽高
    获取当前嵌入窗口所在的那个元素节点
    获取当前页面内框架窗口的数量
    获取窗口顶层对象
    获取当前窗口访问过的页面的数量
    获取`script`标签中的代码内容
  • 原文地址:https://www.cnblogs.com/xiazdong/p/3057992.html
Copyright © 2011-2022 走看看