给定一个长度为 n 的整数数组 A 。
假设 Bk 是数组 A 顺时针旋转 k 个位置后的数组,我们定义 A 的“旋转函数” F 为:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]。
计算F(0), F(1), ..., F(n-1)中的最大值。
注意:
可以认为 n 的值小于 105。
示例:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
所以 F(0), F(1), F(2), F(3) 中的最大值是 F(3) = 26 。
详见:https://leetcode.com/problems/rotate-function/description/
C++:
class Solution { public: int maxRotateFunction(vector<int>& A) { int t=0,sum=0,n=A.size(); for(int i=0;i<n;++i) { sum+=A[i]; t+=i*A[i]; } int res=t; for(int i=1;i<n;++i) { t=t+sum-n*A[n-i]; res=max(res,t); } return res; } };
参考:https://www.cnblogs.com/grandyang/p/5869791.html