zoukankan      html  css  js  c++  java
  • Java 并发学习总结

    基础篇

    https://snailclimb.top/JavaGuide/#/java/Multithread/JavaConcurrencyBasicsCommonInterviewQuestionsSummary?id=_7-什么是上下文切换

    进阶篇

    并发编程的的三个概念(特性)?

    1. 原子性、

    即一个或者多个操作作为一个整体,要么全部执行,要么都不执行,并且操作在执行过程中不会被线程调度机制打断;而且这种操作一旦开始,就一直运行到结束,中间不会有任何上下文切换(context switch)。

    1. 有序性

    即程序执行的顺序按照代码的先后顺序执行。

    1. 可见性

    可见性是指当多个线程访问同一个变量时,一个线程修改了这个变量的值,其他线程能够立即看到修改的值。

    JMM(Java 内存模型)

    volatile 关键字

    1. Java 内存模型(为什么要有 volatile)

    在 JDK1.2 之前,Java的内存模型实现总是从主存(即共享内存)读取变量,是不需要进行特别的注意的。而在当前的 Java 内存模型下,线程可以把变量保存本地内存比如机器的寄存器)中,而不是直接在主存中进行读写。这就可能造成一个线程在主存中修改了一个变量的值,而另外一个线程还继续使用它在寄存器中的变量值的拷贝,造成数据的不一致。

    要解决这个问题,就需要把变量声明为volatile,这就指示 JVM,这个变量是不稳定的,每次使用它都到主存中进行读取。

    volatile 关键字的主要作用保证变量的可见性和然后还有一个作用是防止指令重排序。(两层语义)

    单个 volatile 变量的原子性(对于 i++ 没有原子性,但可以保证与 double/long 的原子读写)

    2. volatile 原理

    有 volatile 修饰的变量在进行写操作时多出一条汇编代码:lock,lock 前缀在多核处理器会引发下面两件事情:

    1. 将当前处理器缓存行的数据写回系统内存
    2. 这个写回内存的操作会使在其他 CPU 里缓存了该内存地址的数据无效

    缓存一致性协议: 每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置成无效状态,当处理器对这个数据进行修改操作的时候,会重新从系统内存中把数据读到处理器缓存里。

    1. Lock前缀指令会引起处理器缓存回写到内存。Lock前缀指令导致在执行指令期间,声言处理器的LOCK#信号。在多处理器环境中,LOCK#信号确保在声言该信号期间,处理器可以独占任何共享内存。但是,在最近的处理器里,LOCK #信号一般不锁总线,而是锁缓存,毕竟锁总线开销的比较大。在8.1.4节有详细说明锁定操作对处理器缓存的影响,对于Intel486和Pentium处理器,在锁操作时,总是在总线上声言LOCK#信号。但在P6和目前的处理器中,如果访问的内存区域已经缓存在处理器内部,则不会声言LOCK#信号。相反,它会锁定这块内存区域的缓存并回写到内存,并使用缓存一致性机制来确保修改的原子性,此操作被称为“缓存锁定”,缓存一致性机制会阻止同时修改由两个以上处理器缓存的内存区域数据。

    2. 一个处理器的缓存回写到内存会导致其他处理器的缓存无效。IA-32处理器和Intel 64处理器使用MESI(修改、独占、共享、无效)控制协议去维护内部缓存和其他处理器缓存的一致性。在多核处理器系统中进行操作的时候,IA-32和Intel 64处理器能嗅探其他处理器访问系统内存和它们的内部缓存。处理器使用嗅探技术保证它的内部缓存、系统内存和其他处理器的缓存的数据在总线上保持一致。例如,在Pentium和P6 family处理器中,如果通过嗅探一个处理器来检测其他处理器打算写内存地址,而这个地址当前处于共享状态,那么正在嗅探的处理器将使它的缓存行无效,在下次访问相同内存地址时,强制执行缓存行填充。

    追加字节性能优化

    • LinkedTransferQueue这个类,它使用一个内部类型来定义队列的头队列Head和尾节点tail,二这个内部类PaddedAtomicReference相对于父类AtomicReference只做了一件事情,就将共享变量共占60个字节,再加上父类的Value变量,一共64个字节。为什么追加64字节能够提高并发编程的效率呢?因为对于因特尔酷睿i7,酷睿,Atom和NetBurst,Core Sole和Pentium M处理器的L1,L2和L3缓存的高速缓存行是64个字节宽,不支持部分填充缓存行,这意味着如果队列的头节点和尾节点都不足64字节的话,处理器会将他们都读到同一个高速缓存行中,在多处理器下每个处理器都会缓存同样的头尾节点,当一个处理器试图修改头接点时会将整个缓存行锁定,那么在在缓存一致性机制的作用下,会导致其他处理器不能访问自己高速缓存中的尾节点,而队列的出队和出队操作时需要不停修改头接点和尾节点,所以在多处理器的情况下将会严重影响到队列的入队和出队效率。Doug lea使用追加到64字节的方式来填满高速缓存区的缓存行,避免头节点和尾节点加载到同一个缓存行,使得头尾节点在修改时不会互相锁定。
    • 那么是不是在使用Volatile变量时都应该追加到64字节呢?不是的,在两种情景下不应该使用这种方式。第一:缓存行非64字节宽的处理器,他们的L1和L2的高速缓存行是32个字节宽。第二:共享变量不会被频繁的写。因此使用追加字节的方式需要处理器读取更多的字节到高速缓存区,这本省就会带来一定的性能损耗,共享变量如果不被频繁写的话,锁的几率也非常的小,就没必要通过追加字节的方式来避免相互锁定。

    synchronized 关键字

    说一下对 Synchronized 的理解

    synchronized关键字解决的是多个线程之间访问资源的同步性,synchronized关键字可以保证被它修饰的方法或者代码块在任意时刻只能有一个线程执行。

    另外,在 Java 早期版本中,synchronized属于重量级锁,效率低下,因为监视器锁(monitor)是依赖于底层的操作系统的 Mutex Lock 来实现的,Java 的线程是映射到操作系统的原生线程之上的。如果要挂起或者唤醒一个线程,都需要操作系统帮忙完成,而操作系统实现线程之间的切换时需要从用户态转换到内核态,这个状态之间的转换需要相对比较长的时间,时间成本相对较高,这也是为什么早期的 synchronized 效率低的原因。庆幸的是在 Java 6 之后 Java 官方对从 JVM 层面对synchronized 较大优化,所以现在的 synchronized 锁效率也优化得很不错了。JDK1.6对锁的实现引入了大量的优化,如自旋锁、适应性自旋锁、锁消除、锁粗化、偏向锁、轻量级锁等技术来减少锁操作的开销。

    synchronized 的三种应用

    • 修饰实例方法: 作用于当前对象实例加锁,进入同步代码前要获得当前对象实例的锁
    • 修饰静态方法: :也就是给当前类加锁,会作用于类的所有对象实例,因为静态成员不属于任何一个实例对象,是类成员( static 表明这是该类的一个静态资源,不管new了多少个对象,只有一份)。所以如果一个线程A调用一个实例对象的非静态 synchronized 方法,而线程B需要调用这个实例对象所属类的静态 synchronized 方法,是允许的,不会发生互斥现象,因为访问静态 synchronized 方法占用的锁是当前类的锁,而访问非静态 synchronized 方法占用的锁是当前实例对象锁
    • 修饰代码块: 指定加锁对象,对给定对象加锁,进入同步代码库前要获得给定对象的锁。

    总结: synchronized 关键字加到 static 静态方法和 synchronized(class)代码块上都是是给 Class 类上锁。synchronized 关键字加到实例方法上是给对象实例上锁。尽量不要使用 synchronized(String a) 因为JVM中,字符串常量池具有缓存功能!

    双重检验锁方式实现单例模式

    双重校验锁实现对象单例(线程安全)

    public class Singleton {
    
        private volatile static Singleton uniqueInstance;
    
        private Singleton() {
        }
    
        public static Singleton getUniqueInstance() {
           //先判断对象是否已经实例过,没有实例化过才进入加锁代码
            if (uniqueInstance == null) {
                //类对象加锁
                synchronized (Singleton.class) {
                    if (uniqueInstance == null) {
                        uniqueInstance = new Singleton();
                    }
                }
            }
            return uniqueInstance;
        }
    }
    

    另外,需要注意 uniqueInstance 采用 volatile 关键字修饰也是很有必要。

    uniqueInstance 采用 volatile 关键字修饰也是很有必要的, uniqueInstance = new Singleton(); 这段代码其实是分为三步执行:

    1. 为 uniqueInstance 分配内存空间
    2. 初始化 uniqueInstance
    3. 将 uniqueInstance 指向分配的内存地址

    但是由于 JVM 具有指令重排的特性,执行顺序有可能变成 1->3->2。指令重排在单线程环境下不会出先问题,但是在多线程环境下会导致一个线程获得还没有初始化的实例。例如,线程 T1 执行了 1 和 3,此时 T2 调用 getUniqueInstance() 后发现 uniqueInstance 不为空,因此返回 uniqueInstance,但此时 uniqueInstance 还未被初始化。

    使用 volatile 可以禁止 JVM 的指令重排,保证在多线程环境下也能正常运行。

    synchronized 底层原理

    synchronized 关键字底层原理属于 JVM 层面。

    ① synchronized 同步语句块的情况

    public class SynchronizedDemo {
        public void method() {
            synchronized (this) {
                System.out.println("synchronized 代码块");
            }
        }
    }
    

    通过 JDK 自带的 javap 命令查看 SynchronizedDemo 类的相关字节码信息:首先切换到类的对应目录执行 javac SynchronizedDemo.java 命令生成编译后的 .class 文件,然后执行javap -c -s -v -l SynchronizedDemo.class

    从上面我们可以看出:

    synchronized 同步语句块的实现使用的是 monitorenter 和 monitorexit 指令,其中 monitorenter 指令指向同步代码块的开始位置,monitorexit 指令则指明同步代码块的结束位置。 当执行 monitorenter 指令时,线程试图获取锁也就是获取 monitor(monitor对象存在于每个Java对象的对象头中,synchronized 锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因) 的持有权。当计数器为0则可以成功获取,获取后将锁计数器设为1也就是加1。相应的在执行 monitorexit 指令后,将锁计数器设为0,表明锁被释放。如果获取对象锁失败,那当前线程就要阻塞等待,直到锁被另外一个线程释放为止。

    ② synchronized 修饰方法的的情况

    public class SynchronizedDemo2 {
        public synchronized void method() {
            System.out.println("synchronized 方法");
        }
    }
    

    synchronized 修饰的方法并没有 monitorenter 指令和 monitorexit 指令,取得代之的确实是 ACC_SYNCHRONIZED 标识,该标识指明了该方法是一个同步方法,JVM 通过该 ACC_SYNCHRONIZED 访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。

    synchronized 如何实现内存可见性

    线程解锁前,必须把共享变量的最新之刷新到主内存中
    线程加锁前,将清空工作内存中共享变量的值,从而使用共享变量时需要从主内存中重新读取最新的值

    在实现上:无论是锁还是volatile的可见性都是通过内存屏障(Memnory Barrier)来实现的

    Java 对象头

    JDK1.6 之后 synchronized 底层的优化

    详情:《Java 并发艺术》P13

    JDK1.6 对锁的实现引入了大量的优化,如偏向锁、轻量级锁、自旋锁、适应性自旋锁、锁消除、锁粗化等技术来减少锁操作的开销。

    锁主要存在四种状态,依次是:无锁状态、偏向锁状态、轻量级锁状态、重量级锁状态,他们会随着竞争的激烈而逐渐升级。注意锁可以升级不可降级,这种策略是为了提高获得锁和释放锁的效率。

    详情:

    ①偏向锁

    引入偏向锁的目的和引入轻量级锁的目的很像,他们都是为了没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。但是不同是:轻量级锁在无竞争的情况下使用 CAS 操作去代替使用互斥量。而偏向锁在无竞争的情况下会把整个同步都消除掉

    偏向锁的“偏”就是偏心的偏,它的意思是会偏向于第一个获得它的线程,如果在接下来的执行中,该锁没有被其他线程获取,那么持有偏向锁的线程就不需要进行同步!关于偏向锁的原理可以查看《深入理解Java虚拟机:JVM高级特性与最佳实践》第二版的13章第三节锁优化。

    但是对于锁竞争比较激烈的场合,偏向锁就失效了,因为这样场合极有可能每次申请锁的线程都是不相同的,因此这种场合下不应该使用偏向锁,否则会得不偿失,需要注意的是,偏向锁失败后,并不会立即膨胀为重量级锁,而是先升级为轻量级锁。

    ② 轻量级锁

    倘若偏向锁失败,虚拟机并不会立即升级为重量级锁,它还会尝试使用一种称为轻量级锁的优化手段(1.6之后加入的)。轻量级锁不是为了代替重量级锁,它的本意是在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗,因为使用轻量级锁时,不需要申请互斥量。另外,轻量级锁的加锁和解锁都用到了CAS操作。 关于轻量级锁的加锁和解锁的原理可以查看《深入理解Java虚拟机:JVM高级特性与最佳实践》第二版的13章第三节锁优化。

    轻量级锁能够提升程序同步性能的依据是“对于绝大部分锁,在整个同步周期内都是不存在竞争的”,这是一个经验数据。如果没有竞争,轻量级锁使用 CAS 操作避免了使用互斥操作的开销。但如果存在锁竞争,除了互斥量开销外,还会额外发生CAS操作,因此在有锁竞争的情况下,轻量级锁比传统的重量级锁更慢!如果锁竞争激烈,那么轻量级将很快膨胀为重量级锁!

    ③ 自旋锁和自适应自旋

    轻量级锁失败后,虚拟机为了避免线程真实地在操作系统层面挂起,还会进行一项称为自旋锁的优化手段。

    互斥同步对性能最大的影响就是阻塞的实现,因为挂起线程/恢复线程的操作都需要转入内核态中完成(用户态转换到内核态会耗费时间)。

    一般线程持有锁的时间都不是太长,所以仅仅为了这一点时间去挂起线程/恢复线程是得不偿失的。 所以,虚拟机的开发团队就这样去考虑:“我们能不能让后面来的请求获取锁的线程等待一会而不被挂起呢?看看持有锁的线程是否很快就会释放锁”。为了让一个线程等待,我们只需要让线程执行一个忙循环(自旋),这项技术就叫做自旋

    百度百科对自旋锁的解释:

    何谓自旋锁?它是为实现保护共享资源而提出一种锁机制。其实,自旋锁与互斥锁比较类似,它们都是为了解决对某项资源的互斥使用。无论是互斥锁,还是自旋锁,在任何时刻,最多只能有一个保持者,也就说,在任何时刻最多只能有一个执行单元获得锁。但是两者在调度机制上略有不同。对于互斥锁,如果资源已经被占用,资源申请者只能进入睡眠状态。但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁,"自旋"一词就是因此而得名。

    自旋锁在 JDK1.6 之前其实就已经引入了,不过是默认关闭的,需要通过--XX:+UseSpinning参数来开启。JDK1.6及1.6之后,就改为默认开启的了。需要注意的是:自旋等待不能完全替代阻塞,因为它还是要占用处理器时间。如果锁被占用的时间短,那么效果当然就很好了!反之,相反!自旋等待的时间必须要有限度。如果自旋超过了限定次数任然没有获得锁,就应该挂起线程。自旋次数的默认值是10次,用户可以修改--XX:PreBlockSpin来更改

    另外,在 JDK1.6 中引入了自适应的自旋锁。自适应的自旋锁带来的改进就是:自旋的时间不在固定了,而是和前一次同一个锁上的自旋时间以及锁的拥有者的状态来决定,虚拟机变得越来越“聪明”了

    ④ 锁消除

    锁消除理解起来很简单,它指的就是虚拟机即使编译器在运行时,如果检测到那些共享数据不可能存在竞争,那么就执行锁消除。锁消除可以节省毫无意义的请求锁的时间。

    ⑤ 锁粗化

    原则上,我们在编写代码的时候,总是推荐将同步块的作用范围限制得尽量小,——直在共享数据的实际作用域才进行同步,这样是为了使得需要同步的操作数量尽可能变小,如果存在锁竞争,那等待线程也能尽快拿到锁。

    大部分情况下,上面的原则都是没有问题的,但是如果一系列的连续操作都对同一个对象反复加锁和解锁,那么会带来很多不必要的性能消耗。

    就是将多次连接在一起的加锁、解锁操作合并为一次,将多个连续的锁扩展成一个范围更大的锁。

    比如每次调用stringBuffer.append方法都需要加锁和解锁,如果虚拟机检测到有一系列连串的对同一个对象加锁和解锁操作,就会将其合并成一次范围更大的加锁和解锁操作,即在第一次append方法时进行加锁,最后一次append方法结束后进行解锁。

    synchronized 和 ReentrantLock 的异同

    ① 两者都是可重入锁

    两者都是可重入锁。“可重入锁”概念是:自己可以再次获取自己的内部锁。比如一个线程获得了某个对象的锁,此时这个对象锁还没有释放,当其再次想要获取这个对象的锁的时候还是可以获取的,如果不可锁重入的话,就会造成死锁。同一个线程每次获取锁,锁的计数器都自增1,所以要等到锁的计数器下降为0时才能释放锁。

    ② synchronized 依赖于 JVM 而 ReentrantLock 依赖于 API

    synchronized 是依赖于 JVM 实现的,前面我们也讲到了 虚拟机团队在 JDK1.6 为 synchronized 关键字进行了很多优化,但是这些优化都是在虚拟机层面实现的,并没有直接暴露给我们。ReentrantLock 是 JDK 层面实现的(也就是 API 层面,需要 lock() 和 unlock() 方法配合 try/finally 语句块来完成),所以我们可以通过查看它的源代码,来看它是如何实现的。

    ③ ReentrantLock 比 synchronized 增加了一些高级功能

    相比synchronized,ReentrantLock增加了一些高级功能。主要来说主要有三点:①等待可中断;②可实现公平锁;③可实现选择性通知(锁可以绑定多个条件)

    • ReentrantLock提供了一种能够中断等待锁的线程的机制,通过lock.lockInterruptibly()来实现这个机制。也就是说正在等待的线程可以选择放弃等待,改为处理其他事情。
    • ReentrantLock可以指定是公平锁还是非公平锁。而synchronized只能是非公平锁。所谓的公平锁就是先等待的线程先获得锁。 ReentrantLock默认情况是非公平的,可以通过 ReentrantLock类的ReentrantLock(boolean fair)构造方法来制定是否是公平的。
    • synchronized 关键字与 wait() 和 notify()/notifyAll() 方法相结合可以实现等待/通知机制,ReentrantLock 类当然也可以实现,但是需要借助于 Condition 接口与 newCondition() 方法。Condition 是JDK1.5之后才有的,它具有很好的灵活性,比如可以实现多路通知功能也就是在一个Lock对象中可以创建多个Condition实例(即对象监视器),线程对象可以注册在指定的Condition中,从而可以有选择性的进行线程通知,在调度线程上更加灵活。 在使用notify()/notifyAll()方法进行通知时,被通知的线程是由 JVM 选择的,用ReentrantLock类结合Condition实例可以实现“选择性通知” ,这个功能非常重要,而且是Condition接口默认提供的。而synchronized关键字就相当于整个Lock对象中只有一个Condition实例,所有的线程都注册在它一个身上。如果执行notifyAll()方法的话就会通知所有处于等待状态的线程这样会造成很大的效率问题,而Condition实例的signalAll()方法 只会唤醒注册在该Condition实例中的所有等待线程。

    如果你想使用上述功能,那么选择ReentrantLock是一个不错的选择。

    ④ 性能已不是选择标准

    悲观锁与乐观锁

    悲观锁

    总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程)。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronizedReentrantLock等独占锁就是悲观锁思想的实现。

    乐观锁

    总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。

    两种锁的使用场景

    从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。

    乐观锁常见的两种实现方式

    乐观锁一般会使用版本号机制或CAS算法实现。

    版本号机制

    一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。

    举一个简单的例子: 假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 $100 。

    1. 操作员 A 此时将其读出( version=1 ),并从其帐户余额中扣除 $50( $100-$50 )。
    2. 在操作员 A 操作的过程中,操作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 $20 ( $100-$20 )。
    3. 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额( balance=$50 ),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
    4. 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数据( balance=$80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。

    这样,就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作员A 的操作结果的可能。

    2. CAS算法

    compare and swap(比较与交换),是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。CAS算法涉及到三个操作数

    • 需要读写的内存值 V
    • 进行比较的值 A
    • 拟写入的新值 B

    当且仅当 V 的值等于 A时,CAS通过原子方式用新值B来更新V的值,否则不会执行任何操作(比较和替换是一个原子操作)。一般情况下是一个自旋操作,即不断的重试

    关于自旋锁,大家可以看一下这篇文章,非常不错:《 面试必备之深入理解自旋锁》

    乐观锁的缺点

    ABA 问题是乐观锁一个常见的问题

    1 ABA 问题

    如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然是A值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回A,那CAS操作就会误认为它从来没有被修改过。这个问题被称为CAS操作的 "ABA"问题。

    JDK 1.5 以后的 AtomicStampedReference 类就提供了此种能力,其中的 compareAndSet 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

    2 循环时间长开销大

    自旋CAS(也就是不成功就一直循环执行直到成功)如果长时间不成功,会给CPU带来非常大的执行开销。 如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。

    3 只能保证一个共享变量的原子操作

    CAS 只对单个共享变量有效,当操作涉及跨多个共享变量时 CAS 无效。但是从 JDK 1.5开始,提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行 CAS 操作.所以我们可以使用锁或者利用AtomicReference类把多个共享变量合并成一个共享变量来操作。

    CAS与synchronized的使用情景

    简单的来说CAS适用于写比较少的情况下(多读场景,冲突一般较少),synchronized适用于写比较多的情况下(多写场景,冲突一般较多)

    1. 对于资源竞争较少(线程冲突较轻)的情况,使用synchronized同步锁进行线程阻塞和唤醒切换以及用户态内核态间的切换操作额外浪费消耗cpu资源;而CAS基于硬件实现,不需要进入内核,不需要切换线程,操作自旋几率较少,因此可以获得更高的性能。
    2. 对于资源竞争严重(线程冲突严重)的情况,CAS自旋的概率会比较大,从而浪费更多的CPU资源,效率低于synchronized。

    补充: Java并发编程这个领域中synchronized关键字一直都是元老级的角色,很久之前很多人都会称它为 “重量级锁” 。但是,在JavaSE 1.6之后进行了主要包括为了减少获得锁和释放锁带来的性能消耗而引入的 偏向锁轻量级锁 以及其它各种优化之后变得在某些情况下并不是那么重了。synchronized的底层实现主要依靠 Lock-Free 的队列,基本思路是 自旋后阻塞竞争切换后继续竞争锁稍微牺牲了公平性,但获得了高吞吐量。在线程冲突较少的情况下,可以获得和CAS类似的性能;而线程冲突严重的情况下,性能远高于CAS。

    AQS

    1. AQS 介绍

    AQS的全称为(AbstractQueuedSynchronizer),这个类在java.util.concurrent.locks包下面。

    AQS类

    AQS是一个用来构建锁和同步器的框架,使用AQS能简单且高效地构造出应用广泛的大量的同步器,比如我们提到的ReentrantLock,Semaphore,其他的诸如ReentrantReadWriteLock,SynchronousQueue,FutureTask等等皆是基于AQS的。当然,我们自己也能利用AQS非常轻松容易地构造出符合我们自己需求的同步器。

    2. AQS 原理分析

    AQS 原理这部分参考了部分博客,在5.2节末尾放了链接。

    在面试中被问到并发知识的时候,大多都会被问到“请你说一下自己对于AQS原理的理解”。下面给大家一个示例供大家参加,面试不是背题,大家一定要加入自己的思想,即使加入不了自己的思想也要保证自己能够通俗的讲出来而不是背出来。

    下面大部分内容其实在AQS类注释上已经给出了,不过是英语看着比较吃力一点,感兴趣的话可以看看源码。

    2.1 AQS 原理概览

    AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态。如果被请求的共享资源被占用,那么就需要一套线程阻塞等待以及被唤醒时锁分配的机制,这个机制AQS是用CLH队列锁实现的,即将暂时获取不到锁的线程加入到队列中。

    CLH(Craig,Landin,and Hagersten)队列是一个虚拟的双向队列(虚拟的双向队列即不存在队列实例,仅存在结点之间的关联关系)。AQS是将每条请求共享资源的线程封装成一个CLH锁队列的一个结点(Node)来实现锁的分配。

    看个AQS(AbstractQueuedSynchronizer)原理图:

    AQS原理图

    AQS使用一个int成员变量来表示同步状态,通过内置的FIFO队列来完成获取资源线程的排队工作。AQS使用CAS对该同步状态进行原子操作实现对其值的修改。

    private volatile int state;//共享变量,使用volatile修饰保证线程可见性
    

    状态信息通过protected类型的getState,setState,compareAndSetState进行操作

    //返回同步状态的当前值
    protected final int getState() {  
            return state;
    }
     // 设置同步状态的值
    protected final void setState(int newState) { 
            state = newState;
    }
    //原子地(CAS操作)将同步状态值设置为给定值update如果当前同步状态的值等于expect(期望值)
    protected final boolean compareAndSetState(int expect, int update) {
            return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
    }
    

    2.2. AQS 对资源的共享方式

    AQS定义两种资源共享方式

    • Exclusive

      (独占):只有一个线程能执行,如ReentrantLock。又可分为公平锁和非公平锁:

      • 公平锁:按照线程在队列中的排队顺序,先到者先拿到锁
      • 非公平锁:当线程要获取锁时,无视队列顺序直接去抢锁,谁抢到就是谁的
    • Share(共享):多个线程可同时执行,如Semaphore/CountDownLatch。Semaphore、CountDownLatch、 CyclicBarrier、ReadWriteLock 我们都会在后面讲到。

    ReentrantReadWriteLock 可以看成是组合式,因为ReentrantReadWriteLock也就是读写锁允许多个线程同时对某一资源进行读。

    不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源 state 的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。

    2.3. AQS底层使用了模板方法模式

    同步器的设计是基于模板方法模式的,如果需要自定义同步器一般的方式是这样(模板方法模式很经典的一个应用):

    1. 使用者继承 AbstractQueuedSynchronizer 并重写指定的方法。(这些重写方法很简单,无非是对于共享资源state的获取和释放)
    2. 将AQS组合在自定义同步组件的实现中,并调用其模板方法,而这些模板方法会调用使用者重写的方法。

    这和我们以往通过实现接口的方式有很大区别,这是模板方法模式很经典的一个运用。

    AQS使用了模板方法模式,自定义同步器时需要重写下面几个AQS提供的模板方法:

    isHeldExclusively()//该线程是否正在独占资源。只有用到condition才需要去实现它。
    tryAcquire(int)//独占方式。尝试获取资源,成功则返回true,失败则返回false。
    tryRelease(int)//独占方式。尝试释放资源,成功则返回true,失败则返回false。
    tryAcquireShared(int)//共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
    tryReleaseShared(int)//共享方式。尝试释放资源,成功则返回true,失败则返回false。
    

    默认情况下,每个方法都抛出 UnsupportedOperationException。 这些方法的实现必须是内部线程安全的,并且通常应该简短而不是阻塞。AQS类中的其他方法都是final ,所以无法被其他类使用,只有这几个方法可以被其他类使用。

    以ReentrantLock为例,state初始化为0,表示未锁定状态。A线程lock()时,会调用tryAcquire()独占该锁并将state+1。此后,其他线程再tryAcquire()时就会失败,直到A线程unlock()到state=0(即释放锁)为止,其它线程才有机会获取该锁。当然,释放锁之前,A线程自己是可以重复获取此锁的(state会累加),这就是可重入的概念。但要注意,获取多少次就要释放多么次,这样才能保证state是能回到零态的。

    再以CountDownLatch以例,任务分为N个子线程去执行,state也初始化为N(注意N要与线程个数一致)。这N个子线程是并行执行的,每个子线程执行完后countDown()一次,state会CAS(Compare and Swap)减1。等到所有子线程都执行完后(即state=0),会unpark()主调用线程,然后主调用线程就会从await()函数返回,继续后余动作。

    一般来说,自定义同步器要么是独占方法,要么是共享方式,他们也只需实现tryAcquire-tryReleasetryAcquireShared-tryReleaseShared中的一种即可。但AQS也支持自定义同步器同时实现独占和共享两种方式,如ReentrantReadWriteLock

    3. AQS 组件总结

    AQS 组件基本都是 Lock 接口聚合一个 AQS 组件的子类来实现的

    public interface Lock {
        void lock();
    
        void lockInterruptibly() throws InterruptedException;//可中断地获取锁
    
        boolean tryLock();
    
        boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    
        void unlock();
    
        Condition newCondition();
    }
    
    • Semaphore(信号量)-允许多个线程同时访问: synchronized 和 ReentrantLock 都是一次只允许一个线程访问某个资源,Semaphore(信号量)可以指定多个线程同时访问某个资源。
    • CountDownLatch (倒计时器): CountDownLatch是一个同步工具类,用来协调多个线程之间的同步。这个工具通常用来控制线程等待,它可以让某一个线程等待直到倒计时结束,再开始执行。
    • CyclicBarrier(循环栅栏): CyclicBarrier 和 CountDownLatch 非常类似,它也可以实现线程间的技术等待,但是它的功能比 CountDownLatch 更加复杂和强大。主要应用场景和 CountDownLatch 类似。CyclicBarrier 的字面意思是可循环使用(Cyclic)的屏障(Barrier)。它要做的事情是,让一组线程到达一个屏障(也可以叫同步点)时被阻塞,直到最后一个线程到达屏障时,屏障才会开门,所有被屏障拦截的线程才会继续干活。CyclicBarrier默认的构造方法是 CyclicBarrier(int parties),其参数表示屏障拦截的线程数量,每个线程调用await()方法告诉 CyclicBarrier 我已经到达了屏障,然后当前线程被阻塞。

    推荐两篇 AQS 原理和相关源码分析的文章:

    https://www.cnblogs.com/waterystone/p/4920797.html

    https://www.cnblogs.com/chengxiao/archive/2017/07/24/7141160.html

    1. synchronized和ReentrantLock的异同以及Synchronized修饰静态方法和成员方法的区别?
    2. 线程池:
      线程池的好处?
      基本组成部分?
      Java中的ThreadPoolExecutor类!线程池涉及到的参数!
      线程池的状态?
      线程池任务执行流程!!
      任务缓存队列及排队策略,如何自定义拒绝策略?
      线程池的种类?
      配置线程池大小,根据CPU密集和IO密集划分
    3. 阻塞队列以及生产者消费者的实现
    4. 内存泄漏和内存溢出,常见的内存泄露(介绍一下HashMap泄露的场景),避免内存泄漏的几点建议?如何定位找到内存泄漏!!
    5. ThreadLocal介绍,实现原理!!ThreadLocal是如何做到为每一个线程维护变量的副本的呢?ThreadLocal和同步机制的区别。
    6. 设计模式的单例和工厂是面得最多的!单例的几种实现方式,一般写典型的双重检查锁定,因为会延伸出volatile,线程安全这些。
      然后就是饿汉式,线程安全为什么不用这个方式呢,简单又线程安全?然后是抽象工厂模式和工厂方法模式区别?JDK或者Spring当中哪里用了设计模式?
  • 相关阅读:
    HDU 1501 Zipper(DFS)
    HDU 2181 哈密顿绕行世界问题(DFS)
    HDU 1254 推箱子(BFS)
    HDU 1045 Fire Net (DFS)
    HDU 2212 DFS
    HDU 1241Oil Deposits (DFS)
    HDU 1312 Red and Black (DFS)
    HDU 1010 Tempter of the Bone(DFS+奇偶剪枝)
    HDU 1022 Train Problem I(栈)
    HDU 1008 u Calculate e
  • 原文地址:https://www.cnblogs.com/xiehang/p/11623902.html
Copyright © 2011-2022 走看看