zoukankan      html  css  js  c++  java
  • 四道简单DP

      DP类题目找到子问题(状态),然后找到转移方程,就OK

    #dp
    #likes matrixchain
    #according to two point's distance to recurrence
    class Solution:
        # @return a string
        def longestPalindrome(self, s):
            length = len(s)
            p = [[0 for col in range(length)] for row in range(length)]
            for i in range(len(s)):
                p[i][i] = 1
                if(i<(length-1) and s[i] == s[i+1]):
                    maxlenth = 2
                    p[i][i+1] = 1
                    start = i
            for i in range(3,length+1):
                for j in range(length-i+1):
                    k = j + i - 1
                    if(s[j]==s[k] and p[j+1][k-1] == 1):
                        maxlenth = i
                        p[j][k] = 1
                        start = j
            return s[start:start+maxlenth]
    
    
    if __name__ == '__main__':
        s = Solution()
        test_str = 'abcba'
        print s.longestPalindrome(test_str)
    #dp least number coins
    #one:overlapping subproblem
    #two:optimal substructure
    class Solution:
        # @return a string
        def least_number_coin(self, s, v):
            #first initialization
            min_number = [1000000]*(s+1)
            min_number[0] = 0
            #And then,recurrence
            #time need O(n^2),and additional time O(n) to save the subproblem's temp solution
            for i in range(1,s+1):
                for j in range(len(v)):
                    print i,v[j]
                    if(v[j]<=i and (min_number[i-v[j]]+1 < min_number[i])):
                        min_number[i] = min_number[i-v[j]]+1
            print min_number
            return min_number[s]
    if __name__ == '__main__':
        s = Solution()
        money = 11
        v = [1,3,5]
        print s.least_number_coin(money,v)
    #dp
    #time O(n^2),addtional O(n) to save temp result
    class Solution:
        # @return a string
        def LIS(self,v):
            print v
            d = [1]*(len(v))
            print d
            for i in range(len(v)):
                for j in range(i):
                    print i,j
                    if (v[j]<=v[i] and d[j]+1>d[i]):
                        d[i] = d[j]+1
            print d
            print max(d)
    if __name__ == '__main__':
        s = Solution()
        v = [5,3,4,8,6,7]
        s.LIS(v)
    #dp
    class Solution:
        # @return a string
        def max_number_apples(self, apples, n, m):
            print apples
            s = [[0 for col in range(m)] for row in range(n)]
            for i in range(n):
                for j in range(m):
                    if(i==0 and j==0):
                        s[i][j] = apples[0][0]
                    elif(i==0 and j>0):
                        s[i][j] = s[i][j-1]+apples[i][j]
                    elif(j==0 and i>0):
                        s[i][j] = s[i-1][j] + apples[i][j]
                    else:
                        if(s[i-1][j]>s[i][j-1]):
                            s[i][j] = s[i-1][j] + apples[i][j]
                        else:
                            s[i][j] = s[i][j-1] + apples[i][j]
            print s
            return s[n-1][m-1]
    if __name__ == '__main__':
        s = Solution()
        n = 3
        m = 4
        apples = [[0 for col in range(m)] for row in range(n)]
        k = 1
        for i in range(n):
            for j in range(m):
                apples[i][j] = k
            k = k + 1
        s.max_number_apples(apples,n,m)

      one:initialization(初始化)

      two:recurrence(递推)

      多项式时间,需要额外的存储空间

  • 相关阅读:
    简单工厂和抽象工厂有什么区别?
    常用的设计模式有哪些?
    常见的HTTP协议状态码?
    数据库分库分表(sharding)系列(二) 全局主键生成策略
    关于垂直切分Vertical Sharding的粒度
    数据库分库分表(sharding)系列(四) 多数据源的事务处理
    分库分表带来的完整性和一致性问题
    [置顶] 深入探析Java线程锁机制
    为啥RESTFULL如此重要?
    hadoop核心逻辑shuffle代码分析-map端
  • 原文地址:https://www.cnblogs.com/xieweichong/p/4313735.html
Copyright © 2011-2022 走看看