DP类题目找到子问题(状态),然后找到转移方程,就OK
#dp #likes matrixchain #according to two point's distance to recurrence class Solution: # @return a string def longestPalindrome(self, s): length = len(s) p = [[0 for col in range(length)] for row in range(length)] for i in range(len(s)): p[i][i] = 1 if(i<(length-1) and s[i] == s[i+1]): maxlenth = 2 p[i][i+1] = 1 start = i for i in range(3,length+1): for j in range(length-i+1): k = j + i - 1 if(s[j]==s[k] and p[j+1][k-1] == 1): maxlenth = i p[j][k] = 1 start = j return s[start:start+maxlenth] if __name__ == '__main__': s = Solution() test_str = 'abcba' print s.longestPalindrome(test_str)
#dp least number coins #one:overlapping subproblem #two:optimal substructure class Solution: # @return a string def least_number_coin(self, s, v): #first initialization min_number = [1000000]*(s+1) min_number[0] = 0 #And then,recurrence #time need O(n^2),and additional time O(n) to save the subproblem's temp solution for i in range(1,s+1): for j in range(len(v)): print i,v[j] if(v[j]<=i and (min_number[i-v[j]]+1 < min_number[i])): min_number[i] = min_number[i-v[j]]+1 print min_number return min_number[s] if __name__ == '__main__': s = Solution() money = 11 v = [1,3,5] print s.least_number_coin(money,v)
#dp #time O(n^2),addtional O(n) to save temp result class Solution: # @return a string def LIS(self,v): print v d = [1]*(len(v)) print d for i in range(len(v)): for j in range(i): print i,j if (v[j]<=v[i] and d[j]+1>d[i]): d[i] = d[j]+1 print d print max(d) if __name__ == '__main__': s = Solution() v = [5,3,4,8,6,7] s.LIS(v)
#dp class Solution: # @return a string def max_number_apples(self, apples, n, m): print apples s = [[0 for col in range(m)] for row in range(n)] for i in range(n): for j in range(m): if(i==0 and j==0): s[i][j] = apples[0][0] elif(i==0 and j>0): s[i][j] = s[i][j-1]+apples[i][j] elif(j==0 and i>0): s[i][j] = s[i-1][j] + apples[i][j] else: if(s[i-1][j]>s[i][j-1]): s[i][j] = s[i-1][j] + apples[i][j] else: s[i][j] = s[i][j-1] + apples[i][j] print s return s[n-1][m-1] if __name__ == '__main__': s = Solution() n = 3 m = 4 apples = [[0 for col in range(m)] for row in range(n)] k = 1 for i in range(n): for j in range(m): apples[i][j] = k k = k + 1 s.max_number_apples(apples,n,m)
one:initialization(初始化)
two:recurrence(递推)
多项式时间,需要额外的存储空间