zoukankan      html  css  js  c++  java
  • 算法进阶面试题02——BFPRT算法、找出最大/小的K个数、双向队列、生成窗口最大值数组、最大值减最小值小于或等于num的子数组数量、介绍单调栈结构(找出临近的最大数)

    第二课主要介绍第一课余下的BFPRT算法和第二课部分内容

     

    1、BFPRT算法详解与应用

    找到第K小或者第K大的数。

    普通做法:先通过堆排序然后取,是n*logn的代价。

        // O(N*logK)
        public static int[] getMinKNumsByHeap(int[] arr, int k) {
            if (k < 1 || k > arr.length) {
                return arr;
            }
            int[] kHeap = new int[k];//存放第k小的数
            for (int i = 0; i != k; i++) {//把k个数形成大顶堆
                heapInsert(kHeap, arr[i], i);
            }
            //剩余的数,逐个检查是否有小于堆顶的数
            for (int i = k; i != arr.length; i++) {
                if (arr[i] < kHeap[0]) {
                    kHeap[0] = arr[i];
                    heapify(kHeap, 0, k);
                }
            }
            return kHeap;
        }
    
        public static void heapInsert(int[] arr, int value, int index) {
            arr[index] = value;
            while (index != 0) {
                int parent = (index - 1) / 2;
                if (arr[parent] < arr[index]) {
                    swap(arr, parent, index);
                    index = parent;
                } else {
                    break;
                }
            }
        }
    
        public static void heapify(int[] arr, int index, int heapSize) {
            int left = index * 2 + 1;
            int right = index * 2 + 2;
            int largest = index;
            while (left < heapSize) {
                if (arr[left] > arr[index]) {
                    largest = left;
                }
                if (right < heapSize && arr[right] > arr[largest]) {
                    largest = right;
                }
                if (largest != index) {
                    swap(arr, largest, index);
                } else {
                    break;
                }
                index = largest;
                left = index * 2 + 1;
                right = index * 2 + 2;
            }
        }

     

    基于荷兰国旗问题,可以实现o(N)的代价。

     

     

    每次都分小于等于大于区域,再判断是拿大于区域还是小于区域继续划分,等于的话就直接出答案。

     

    选划分值是关键。最差情况可能导致o(n²)

    因为每个位置都是等概率的,概率累加,数学上的长期期望是o(n)的。

     

    BFPRT算法,是严格o(n)的。

    流程:

     

     

    bfprt获得划分的中位数

     

     

    例子:

     

    目的:达到第三步如果还超过5个,要继续递归调用划分,直到少于5个找到划分值。

     

    为什么选这个值?

    复杂度分析:

     

     

    按照最差情况最多多少个数比P要小、最多多少个数比P要大。

     

     

     

    至少有3N/10个比你大。最多7N/10个比你小。

     

    1、逻辑分组

    2、组内排序

    3、所有数组成一个数组

    4、BFPRT调用自己

    5、做划分值

    6、如果没命中,左右两边只走一侧,左/右部分最多7n/10。

     

    应用:在一个数组中,找出最大/小的K个数的问题。

    大部分用堆做o(n*logn),最优解是BFPRT。

        // O(N)
        public static int[] getMinKNumsByBFPRT(int[] arr, int k) {
            if (k < 1 || k > arr.length) {
                return arr;
            }
            //获得第K小的数
            int minKth = getMinKthByBFPRT(arr, k);
            int[] res = new int[k];//答案数组
            int index = 0;
            for (int i = 0; i != arr.length; i++) {
                if (arr[i] < minKth) {//把小于K的加入到数组
                    res[index++] = arr[i];
                }
            }
            for (; index != res.length; index++) {//不足补K
                res[index] = minKth;
            }
            return res;
        }
    
        public static int getMinKthByBFPRT(int[] arr, int K) {
            int[] copyArr = copyArray(arr);
            return bfprt(copyArr, 0, copyArr.length - 1, K - 1);
        }
    
        public static int[] copyArray(int[] arr) {
            int[] res = new int[arr.length];
            for (int i = 0; i != res.length; i++) {
                res[i] = arr[i];
            }
            return res;
        }
        //获得第i小的数
        public static int bfprt(int[] arr, int begin, int end, int i) {
            if (begin == end) {
                return arr[begin];
            }
            //获得中位数的中位数,作为划分值
            int pivot = medianOfMedians(arr, begin, end);
            int[] pivotRange = partition(arr, begin, end, pivot);
            if (i >= pivotRange[0] && i <= pivotRange[1]) {//命中
                return arr[i];
            } else if (i < pivotRange[0]) {
                return bfprt(arr, begin, pivotRange[0] - 1, i);
            } else {
                return bfprt(arr, pivotRange[1] + 1, end, i);
            }
        }
        //获得中位数的中位数
        public static int medianOfMedians(int[] arr, int begin, int end) {
            int num = end - begin + 1;//总数
            int offset = num % 5 == 0 ? 0 : 1;//不够五个自成一组
            int[] mArr = new int[num / 5 + offset];//中位数组成的数组
            for (int i = 0; i < mArr.length; i++) {
                int beginI = begin + i * 5;//开始位置
                int endI = beginI + 4;
                mArr[i] = getMedian(arr, beginI, Math.min(end, endI));
            }
            //复用bfprt,找出数组中第中间小的数,即中位数。
            return bfprt(mArr, 0, mArr.length - 1, mArr.length / 2);
        }
    
        public static int[] partition(int[] arr, int begin, int end, int pivotValue) {
            int small = begin - 1;
            int cur = begin;
            int big = end + 1;
            while (cur != big) {
                if (arr[cur] < pivotValue) {
                    swap(arr, ++small, cur++);
                } else if (arr[cur] > pivotValue) {
                    swap(arr, cur, --big);
                } else {
                    cur++;
                }
            }
            int[] range = new int[2];
            range[0] = small + 1;//等于区域的最左
            range[1] = big - 1;//最右
            return range;
        }
    
        public static int getMedian(int[] arr, int begin, int end) {
            insertionSort(arr, begin, end);
            int sum = end + begin;
            System.out.println(end + " " + begin + " " + sum);
            int mid = (sum / 2) + (sum % 2);//取中位数
            System.out.println(mid + "----" + arr[mid]);
            return arr[mid];
    
        }
    
        public static void insertionSort(int[] arr, int begin, int end) {
            for (int i = begin + 1; i != end + 1; i++) {
                for (int j = i; j != begin; j--) {
                    if (arr[j - 1] > arr[j]) {
                        swap(arr, j - 1, j);
                    } else {
                        break;
                    }
                }
            }
        }
    
        public static void swap(int[] arr, int index1, int index2) {
            int tmp = arr[index1];
            arr[index1] = arr[index2];
            arr[index2] = tmp;
        }
    
        public static void printArray(int[] arr) {
            for (int i = 0; i != arr.length; i++) {
                System.out.print(arr[i] + " ");
            }
            System.out.println();
        }
    
        public static void main(String[] args) {
            int[] arr = {6, 9, 1, 3, 1, 2, 2, 5, 6, 1, 3, 5, 9, 7, 2, 5, 6, 1, 9};
            // sorted : { 1, 1, 1, 1, 2, 2, 2, 3, 3, 5, 5, 5, 6, 6, 6, 7, 9, 9, 9 }
            printArray(getMinKNumsByHeap(arr, 10));
            printArray(getMinKNumsByBFPRT(arr, 10));
    
        }

     

     第二课内容

    1、介绍窗口及窗口内最大值或最小值的更新结构(单调双向队列)

    双端队列结构。

     

     

    加数逻辑:进来的数如果比他前面的数要大,那就把前面比他小的全部弹出。

    减数逻辑:L向前移动,说明某一下标过期,到队列中检查头部节点是否过期,过期就弹出。

    队列中留的数,在L缩的时候,都有可能成为最大值。

     

     

    这个情况,3进来干掉了前面进去的1,因为减数是左到右的,1不可能再成为最大值了,所以如果6进来,前面的都可以干掉了。

     

     

    总规则:LR不回退、L不能超过R。

    下标必须要,下面的情况以下标大为主。

     

    应用

    1、生成窗口最大值数组

    有一个整型数组arr和一个大小为w的窗口从数组的最左边滑到最右边,窗口每次向右边滑一个位置。

    例如,数组为[4,3,5,4,3,3,6,7],窗口大小为3时:

     

    [4 3 5] 4 3 3 6 7 窗口中最大值为5

    4 [3 5 4] 3 3 6 7 窗口中最大值为5

    4 3 [5 4 3] 3 6 7 窗口中最大值为5

    4 3 5 [4 3 3] 6 7 窗口中最大值为4

    4 3 5 4 [3 3 6] 7 窗口中最大值为6

    4 3 5 4 3 [3 6 7] 窗口中最大值为7

     

    如果数组长度为n,窗口大小为w,则一共产生n-w+1个窗口的最大值。

    请实现一个函数,给定一个数组arr,窗口大小w。

    返回一个长度为n-w+1的数组res,res[i]表示每一种窗口状态下的最大值。以本题为例,结果应该返回[5,5,5,4,6,7]。

    详见代码...

    public class Code_01_SlidingWindowMaxArray {
        public static int[] getMaxWindow(int[] arr, int w) {
            if(arr == null || w < 1 || arr.length < w){
                return null;
            }
            
            LinkedList<Integer> qmax = new LinkedList<Integer>();//双向链表,双端队列
            int[] res = new int[arr.length - w + 1];
            int index = 0;
            for (int i = 0; i < arr.length; i++) {
                //当队列不是空且入队列的数大于原队列的最后一个数
                while (!qmax.isEmpty() && arr[qmax.peekLast()] <= arr[i]) {
                    qmax.pollLast();
                }
                qmax.addLast(i);
                //每次加一个,缩一个的时候就看看头节点是否过期。
                ///当窗口向右移动,原来在窗口中的最左端数字失效了比如1234,w=3,移动到了4,3-3=0,所以下标为0的就失效,退出队列
                if(qmax.peekFirst() == i - w){
                    qmax.pollFirst();
                }
                //当i大于等于窗口大小时才开始计算窗口里的最大值
                if (i >= w - 1) {
                    res[index++] = arr[qmax.peekFirst()];
                }
            }
            return res;
        }
            
        public static void main(String[] args) {
            int[] arr={2,3,4,2,6,2,5,1};
            int[] maxWindow = getMaxWindow(arr, 3);
            for (int i = 0; i < maxWindow.length; i++) {
                System.out.print(maxWindow[i]+"-");
            }
        }
    }

    2、最大值减去最小值小于或等于num的子数组数量

    给定数组arr和整数num,返回有多少个子数组满足如下情况:

    max(arr[i..j]) - min(arr[i..j]) <= num

    max(arr[i..j])表示子数组arr[i..j]中的最大值,min(arr[i..j])表示子数组arr[i..j]中的最小值。

    要求:

    如果数组长度为 N,请实现时间复杂度为 O(N)的解法。

    子数组的数量。(子数组是连续的)

     

    暴力方法o(n^3),没必要看了。

        //暴力的方法o(n^3),没必要看了
        public static int getNum1(int[] array,int num) {
            int count = 0;
            for (int start = 0; start != array.length; start++) {
                for (int end = start; end != start; end++) {
                    if (isValid(array,start,end,num))
                        count++;
                }
            }
            return count;
        }
    
        public static boolean isValid(int[] array, int s, int e, int num) {
            int MAX = Integer.MAX_VALUE;
            int MIN = Integer.MIN_VALUE;
            for (int n = s; n != e; n++) {//找出最大最小
                MAX = Math.max(array[n], MAX);
                MIN = Math.min(array[n], MIN);
            }
            return MAX - MIN <= num;
        }
    暴力解法

    先说几个结论:

    1、一个数组L~R达标,内部的子数组一定达标。

    缩小范围只可能让MAX变小、MIN变大

     

    2、L~R不达标,数组往外扩肯定不达标。

     

    利用这个性质,加上双端队列。

     

    使用窗口最大/小值,在扩充下一个后是不达标的位置停下。

    假设是0~X,那么就得到了X+1个以0开头的达标数组。(再往后都是不达标的,所以以0开头的全部找出res += x+1)

     

    接着,L向前移动,R可以继续向前扩,同理到了不能扩的地方就停,L所在的位置就全部计算出。

     

        public static int getNum(int[] arr, int num) {
            if (arr == null || arr.length == 0) {
                return 0;
            }
            //准备最大/小值的更新结构
            LinkedList<Integer> qmin = new LinkedList<Integer>();
            LinkedList<Integer> qmax = new LinkedList<Integer>();
            int L = 0;
            int R = 0;
            int res = 0;
            while (L < arr.length) {
                while (R < arr.length) {//R扩到不能再扩,停
                    //最小值结构更新
                    while (!qmin.isEmpty() && arr[qmin.peekLast()] >= arr[R]) {
                        qmin.pollLast();
                    }
                    qmin.addLast(R);
                    ////最大值结构更新
                    while (!qmax.isEmpty() && arr[qmax.peekLast()] <= arr[R]) {
                        qmax.pollLast();
                    }
                    qmax.addLast(R);
                    //不达标
                    if (arr[qmax.getFirst()] - arr[qmin.getFirst()] > num) {
                        break;
                    }
                    R++;
                }
                //L向前推动,双端队列进行调整
                if (qmin.peekFirst() == L) {
                    qmin.pollFirst();
                }
                if (qmax.peekFirst() == L) {
                    qmax.pollFirst();
                }
                res += R - L;
                L++;//换一个开头
            }
            return res;
        }
    
        public static void main(String[] args) {
            // TODO Auto-generated method stub
            int[] arr_test = {1, 2, 3, 4, 5, 6, 7, 8, 9};
            int num_test = 4;
            int res_test;
            res_test = getNum(arr_test, num_test);
            System.out.printf("res = %d", res_test);
        }

     

    3、介绍单调栈结构

    在一个数组中,所有的数左/右边距离最近的比他大的数。

    能不能o(n)做到

     

    弹出的时候生成信息。

    让他弹出的是右边比他大的,他下面的是左边最近比他大的。

     

    如果数组遍历完,就单独处理栈内的信息。单独弹出的右边为null,左边是底下的数。

     

    特殊情况:

    相同的数,压在一起。

     

    相等情况,不会有影响,下标压在一起,共同结算即可。

     

    这个流程为什么对?

    因为我们的逻辑是遇到大的就弹出,所以a在碰到c之前,肯定没有遇到比自己大的数,才会等到c出现才弹出的。

     

    b肯定在a的左边,为什么b在a的下面?肯定是因为b大于a,如果b和a之间存在数,肯定是小于a的,那并不影响我们的查找左边最近大于a的数的逻辑。也不会存在a<x<b的数,存在的话,就轮不到a挨着b了,会变成a x b。

    所以流程证明完毕。

     

     

  • 相关阅读:
    So sad! ,Asphyre Closure
    Asphyre Sphinx is a cross-platform framework for developing 2D/3D video games and interactive business applications
    Mark: admob for delphi xe4 integrated 80% -done!-95% to do more test
    CCBPM新手流程设计教程
    CCBPM 常用API接口说明
    CCBPM H5版本中组织结构集成以及与外部数据源同步介绍
    关于驰骋工作流引擎ccbpm 在工业自动化环境下的应用演示实例
    关于驰骋工作流引擎ccbpm 在工业自动化环境下的 应用演示实例
    CCFlow新版本的自由流程、自定义流程功能说明
    关于驰骋工作流引擎ccbpm对bpmn2.0的支持
  • 原文地址:https://www.cnblogs.com/xieyupeng/p/10373585.html
Copyright © 2011-2022 走看看