zoukankan      html  css  js  c++  java
  • HybridSN中添加SE模块

    代码练习

    HybridSN中添加SE模块

    #! wget http://www.ehu.eus/ccwintco/uploads/6/67/Indian_pines_corrected.mat
    #! wget http://www.ehu.eus/ccwintco/uploads/c/c4/Indian_pines_gt.mat
    #! pip install spectral
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.io as sio
    from sklearn.decomposition import PCA
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import confusion_matrix, accuracy_score, classification_report, cohen_kappa_score
    import spectral
    import torch
    import torchvision
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.optim as optim
    
    class_num = 16
    
    class SEBlock(nn.Module):
      def __init__(self,in_channels,r=16):
        super(SEBlock,self).__init__()
        self.globalAvgPool = nn.AdaptiveAvgPool2d((1,1))
        self.fc1 = nn.Linear(in_channels,round(in_channels/r))
        self.fc2 = nn.Linear(round(in_channels/r),in_channels)
      def forward(self,x):
        out = self.globalAvgPool(x)
        out = out.view(x.shape[0],-1)
        out = F.relu(self.fc1(out))
        out = F.sigmoid(self.fc2(out))
        out = out.view(x.shape[0],x.shape[1],1,1)
        out = x * out
        return out
    
    class HybridSN(nn.Module):
      def __init__(self):
        super(HybridSN,self).__init__()
        self.conv3d1 = nn.Conv3d(1,8,kernel_size=(7,3,3),stride=1,padding=0)
        self.bn1 = nn.BatchNorm3d(8)
        self.conv3d2 = nn.Conv3d(8,16,kernel_size=(5,3,3),stride=1,padding=0)
        self.bn2 = nn.BatchNorm3d(16)
        self.conv3d3 = nn.Conv3d(16,32,kernel_size=(3,3,3),stride=1,padding=0)
        self.bn3 = nn.BatchNorm3d(32)
        self.conv2d4 = nn.Conv2d(576,64,kernel_size=(3,3),stride=1,padding=0)
        self.SElayer = SEBlock(64,16)
        self.bn4 = nn.BatchNorm2d(64)
        self.fc1 = nn.Linear(18496,256)
        self.fc2 = nn.Linear(256,128)
        self.fc3 = nn.Linear(128,16)
        self.dropout = nn.Dropout(0.4)
    
      def forward(self,x):
        out = F.relu(self.bn1(self.conv3d1(x)))
        out = F.relu(self.bn2(self.conv3d2(out)))
        out = F.relu(self.bn3(self.conv3d3(out)))
        out = F.relu(self.bn4(self.conv2d4(out.reshape(out.shape[0],-1,19,19))))
        out = self.SElayer(out)
        out = out.reshape(out.shape[0],-1)
        out = F.relu(self.dropout(self.fc1(out)))
        out = F.relu(self.dropout(self.fc2(out)))
        out = self.fc3(out)
        return out
    
    
    def applyPCA(X, numComponents):
        newX = np.reshape(X, (-1, X.shape[2]))
        pca = PCA(n_components=numComponents, whiten=True)
        newX = pca.fit_transform(newX)
        newX = np.reshape(newX, (X.shape[0], X.shape[1], numComponents))
        return newX
    
    # 对单个像素周围提取 patch 时,边缘像素就无法取了,因此,给这部分像素进行 padding 操作
    def padWithZeros(X, margin=2):
        newX = np.zeros((X.shape[0] + 2 * margin, X.shape[1] + 2* margin, X.shape[2]))
        x_offset = margin
        y_offset = margin
        newX[x_offset:X.shape[0] + x_offset, y_offset:X.shape[1] + y_offset, :] = X
        return newX
    
    # 在每个像素周围提取 patch ,然后创建成符合 keras 处理的格式
    def createImageCubes(X, y, windowSize=5, removeZeroLabels = True):
        # 给 X 做 padding
        margin = int((windowSize - 1) / 2)
        zeroPaddedX = padWithZeros(X, margin=margin)
        # split patches
        patchesData = np.zeros((X.shape[0] * X.shape[1], windowSize, windowSize, X.shape[2]))
        patchesLabels = np.zeros((X.shape[0] * X.shape[1]))
        patchIndex = 0
        for r in range(margin, zeroPaddedX.shape[0] - margin):
            for c in range(margin, zeroPaddedX.shape[1] - margin):
                patch = zeroPaddedX[r - margin:r + margin + 1, c - margin:c + margin + 1]   
                patchesData[patchIndex, :, :, :] = patch
                patchesLabels[patchIndex] = y[r-margin, c-margin]
                patchIndex = patchIndex + 1
        if removeZeroLabels:
            patchesData = patchesData[patchesLabels>0,:,:,:]
            patchesLabels = patchesLabels[patchesLabels>0]
            patchesLabels -= 1
        return patchesData, patchesLabels
    
    def splitTrainTestSet(X, y, testRatio, randomState=345):
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=testRatio, random_state=randomState, stratify=y)
        return X_train, X_test, y_train, y_test
    # 地物类别
    class_num = 16
    X = sio.loadmat('Indian_pines_corrected.mat')['indian_pines_corrected']
    y = sio.loadmat('Indian_pines_gt.mat')['indian_pines_gt']
    
    # 用于测试样本的比例
    test_ratio = 0.90
    # 每个像素周围提取 patch 的尺寸
    patch_size = 25
    # 使用 PCA 降维,得到主成分的数量
    pca_components = 30
    
    print('Hyperspectral data shape: ', X.shape)
    print('Label shape: ', y.shape)
    
    print('
    ... ... PCA tranformation ... ...')
    X_pca = applyPCA(X, numComponents=pca_components)
    print('Data shape after PCA: ', X_pca.shape)
    
    print('
    ... ... create data cubes ... ...')
    X_pca, y = createImageCubes(X_pca, y, windowSize=patch_size)
    print('Data cube X shape: ', X_pca.shape)
    print('Data cube y shape: ', y.shape)
    
    print('
    ... ... create train & test data ... ...')
    Xtrain, Xtest, ytrain, ytest = splitTrainTestSet(X_pca, y, test_ratio)
    print('Xtrain shape: ', Xtrain.shape)
    print('Xtest  shape: ', Xtest.shape)
    
    # 改变 Xtrain, Ytrain 的形状,以符合 keras 的要求
    Xtrain = Xtrain.reshape(-1, patch_size, patch_size, pca_components, 1)
    Xtest  = Xtest.reshape(-1, patch_size, patch_size, pca_components, 1)
    print('before transpose: Xtrain shape: ', Xtrain.shape) 
    print('before transpose: Xtest  shape: ', Xtest.shape) 
    
    # 为了适应 pytorch 结构,数据要做 transpose
    Xtrain = Xtrain.transpose(0, 4, 3, 1, 2)
    Xtest  = Xtest.transpose(0, 4, 3, 1, 2)
    print('after transpose: Xtrain shape: ', Xtrain.shape) 
    print('after transpose: Xtest  shape: ', Xtest.shape) 
    
    
    """ Training dataset"""
    class TrainDS(torch.utils.data.Dataset): 
        def __init__(self):
            self.len = Xtrain.shape[0]
            self.x_data = torch.FloatTensor(Xtrain)
            self.y_data = torch.LongTensor(ytrain)        
        def __getitem__(self, index):
            # 根据索引返回数据和对应的标签
            return self.x_data[index], self.y_data[index]
        def __len__(self): 
            # 返回文件数据的数目
            return self.len
    
    """ Testing dataset"""
    class TestDS(torch.utils.data.Dataset): 
        def __init__(self):
            self.len = Xtest.shape[0]
            self.x_data = torch.FloatTensor(Xtest)
            self.y_data = torch.LongTensor(ytest)
        def __getitem__(self, index):
            # 根据索引返回数据和对应的标签
            return self.x_data[index], self.y_data[index]
        def __len__(self): 
            # 返回文件数据的数目
            return self.len
    
    # 创建 trainloader 和 testloader
    trainset = TrainDS()
    testset  = TestDS()
    train_loader = torch.utils.data.DataLoader(dataset=trainset, batch_size=128, shuffle=True, num_workers=2)
    test_loader  = torch.utils.data.DataLoader(dataset=testset,  batch_size=128, shuffle=False, num_workers=2)
    # 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    # 网络放到GPU上
    net = HybridSN().to(device)
    
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.001)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min',verbose=True,factor=0.9,min_lr=1e-6)
    
    # 开始训练
    total_loss = 0
    net.train()
    for epoch in range(100):
        for i, (inputs, labels) in enumerate(train_loader):
            inputs = inputs.to(device)
            labels = labels.to(device)
            # 优化器梯度归零
            optimizer.zero_grad()
            # 正向传播 + 反向传播 + 优化 
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            scheduler.step(loss) 
            total_loss += loss.item()
            nn.ReLU()
        print('[Epoch: %d]   [loss avg: %.4f]   [current loss: %.4f]' %(epoch + 1, total_loss/(epoch+1), loss.item()))
    
    print('Finished Training')
    net.eval()
    count = 0
    for inputs,labels in test_loader:
      inputs = inputs.to(device)
      labels = labels.to(device)
      outputs = net(inputs)
      _,preds = torch.max(outputs,1)
      count += (preds == labels).sum().item()
    print("Test ACC:{}".format(count/len(testset)))
    

    测试结果对比

    未加BN、SE模块时测试三次的结果:0.9805、0.9412、0.9624
    添加BN层后测试三次的结果:0.9860、0.9789、0.9820
    再添加学习率衰减后测试三次的结果:0.9895、0.9901、0.9897
    再添加SE模块后测试三次的结果(测试在2D卷积层前后都添加SE模块,效果并不好):0.9913、0.9895、0.9912

    添加BN层后训练结果比较稳定,而且收敛的很快。
    添加SE模块后,准确率还是略有提高的,但效果没有那么明显,可能是因为模型比较简单,已经采取提升性能的一些操作,所以提升并没有那么明显。

    问题思考

    训练网络,然后多测试几次,会发现每次分类的结果都不一样的原因

    原因是 网络中添加了dropout层和BN层时,在测试时应当关闭这两个层。
    在训练时应当指定当前是训练模式:model.train()开启这两个层;在测试时应当指定是测试模式:model.eval()关闭这两个层。
    dropout层在训练过程中以指定概率p使神经元失活,让它在这次的传播过程的输出为0。当我们的模型训练好进行预测时,要使用所有神经元而且要乘以一个补偿系数。所以要指定当前是训练还是测试模式。
    BN层在测试的时候采用的是固定的mean和var,这俩固定的参数是在训练时统计计算得到的。因为这俩参数是在前向传播过程中计算的,所以在测试模式的时候你如果没有指定model.eval(),那么这俩参数还会根据你的测试数据更新,导致结果的参考价值不大。
    综上,如果网络中添加了BN层和dropout层而不使用model.eval()的话,每次测试的时候 模型并不是固定的,所以每次的分类结果可能并不一致。

    SENet的提升分类性能的本质原理

    Excitation 的输出的权重看做是进过特征选择后的每个特征通道的重要性,然后通过乘法逐通道加权到先前的特征上,完成在通道维度上的对原始特征的重标定,提升有用的特征并抑制对当前任务用处不大的特征。
    猜测:有用的特征的乘的scale比较大,它的数值就比较大;用处不大的特征乘的scale较小,它的数值就比较小。考虑在最后一个全局平均池化层处,有用的特征经过池化后的输出也比较大,它对最终分类结果的影响就比较大,同理用处不大的特征对最终分类结果的影响就比较小,这样提升了分类的性能。

  • 相关阅读:
    LoadRunner参数化取值与连接数据库
    LoadRunner调用Java程序—性能测试
    Linux中crontab定时任务命令
    Ubuntu安装snmp之监控管理
    TestLink1.9.3测试用例:Excel转换XML工具<一>
    探讨LoadRunner的并发用户和集合点
    Ubuntu下安装netsnmp
    Scrum—Sprint 评审
    深入解析LoadRunner下的参数化取值
    TestLink测试用例:Excel转换XML工具<二>实现代码
  • 原文地址:https://www.cnblogs.com/xiezhijie/p/13472076.html
Copyright © 2011-2022 走看看