zoukankan      html  css  js  c++  java
  • R语言学习笔记(二十二):字符串处理中的函数对比(代码实现)

    字符串处理中基本函数的使用

    R自带函数与stringr包函数对比

    > states <- row.names(USArrests)
    > # 提取字符串子集
    > substr(x = states, start = 1, stop = 4)
     [1] "Alab" "Alas" "Ariz" "Arka" "Cali" "Colo" "Conn" "Dela" "Flor" "Geor" "Hawa" "Idah" "Illi" "Indi" "Iowa" "Kans" "Kent"
    [18] "Loui" "Main" "Mary" "Mass" "Mich" "Minn" "Miss" "Miss" "Mont" "Nebr" "Neva" "New " "New " "New " "New " "Nort" "Nort"
    [35] "Ohio" "Okla" "Oreg" "Penn" "Rhod" "Sout" "Sout" "Tenn" "Texa" "Utah" "Verm" "Virg" "Wash" "West" "Wisc" "Wyom"
    > abbreviate(states, minlength = 5)
           Alabama         Alaska        Arizona       Arkansas     California       Colorado    Connecticut       Delaware 
           "Alabm"        "Alask"        "Arizn"        "Arkns"        "Clfrn"        "Colrd"        "Cnnct"        "Delwr" 
           Florida        Georgia         Hawaii          Idaho       Illinois        Indiana           Iowa         Kansas 
           "Flord"        "Georg"        "Hawai"        "Idaho"        "Illns"        "Indin"         "Iowa"        "Kanss" 
          Kentucky      Louisiana          Maine       Maryland  Massachusetts       Michigan      Minnesota    Mississippi 
           "Kntck"        "Lousn"        "Maine"        "Mryln"        "Mssch"        "Mchgn"        "Mnnst"        "Mssss" 
          Missouri        Montana       Nebraska         Nevada  New Hampshire     New Jersey     New Mexico       New York 
           "Missr"        "Montn"        "Nbrsk"        "Nevad"        "NwHmp"        "NwJrs"        "NwMxc"        "NwYrk" 
    North Carolina   North Dakota           Ohio       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
           "NrthC"        "NrthD"         "Ohio"        "Oklhm"        "Oregn"        "Pnnsy"        "RhdIs"        "SthCr" 
      South Dakota      Tennessee          Texas           Utah        Vermont       Virginia     Washington  West Virginia 
           "SthDk"        "Tnnss"        "Texas"         "Utah"        "Vrmnt"        "Virgn"        "Wshng"        "WstVr" 
         Wisconsin        Wyoming 
           "Wscns"        "Wymng" 
    > # 计算字符串长度
    > nchar(states)
     [1]  7  6  7  8 10  8 11  8  7  7  6  5  8  7  4  6  8  9  5  8 13  8  9 11  8  7  8  6 13 10 10  8 14 12  4  8  6 12 12 14 12
    [42]  9  5  4  7  8 10 13  9  7
    > str_count(states)
     [1]  7  6  7  8 10  8 11  8  7  7  6  5  8  7  4  6  8  9  5  8 13  8  9 11  8  7  8  6 13 10 10  8 14 12  4  8  6 12 12 14 12
    [42]  9  5  4  7  8 10 13  9  7
    > str_length(states)
     [1]  7  6  7  8 10  8 11  8  7  7  6  5  8  7  4  6  8  9  5  8 13  8  9 11  8  7  8  6 13 10 10  8 14 12  4  8  6 12 12 14 12
    [42]  9  5  4  7  8 10 13  9  7
    > # 大写和小写
    > tolower(states)     # 变为小写
     [1] "alabama"        "alaska"         "arizona"        "arkansas"       "california"     "colorado"       "connecticut"   
     [8] "delaware"       "florida"        "georgia"        "hawaii"         "idaho"          "illinois"       "indiana"       
    [15] "iowa"           "kansas"         "kentucky"       "louisiana"      "maine"          "maryland"       "massachusetts" 
    [22] "michigan"       "minnesota"      "mississippi"    "missouri"       "montana"        "nebraska"       "nevada"        
    [29] "new hampshire"  "new jersey"     "new mexico"     "new york"       "north carolina" "north dakota"   "ohio"          
    [36] "oklahoma"       "oregon"         "pennsylvania"   "rhode island"   "south carolina" "south dakota"   "tennessee"     
    [43] "texas"          "utah"           "vermont"        "virginia"       "washington"     "west virginia"  "wisconsin"     
    [50] "wyoming"       
    > toupper(states)     # 变为大写
     [1] "ALABAMA"        "ALASKA"         "ARIZONA"        "ARKANSAS"       "CALIFORNIA"     "COLORADO"       "CONNECTICUT"   
     [8] "DELAWARE"       "FLORIDA"        "GEORGIA"        "HAWAII"         "IDAHO"          "ILLINOIS"       "INDIANA"       
    [15] "IOWA"           "KANSAS"         "KENTUCKY"       "LOUISIANA"      "MAINE"          "MARYLAND"       "MASSACHUSETTS" 
    [22] "MICHIGAN"       "MINNESOTA"      "MISSISSIPPI"    "MISSOURI"       "MONTANA"        "NEBRASKA"       "NEVADA"        
    [29] "NEW HAMPSHIRE"  "NEW JERSEY"     "NEW MEXICO"     "NEW YORK"       "NORTH CAROLINA" "NORTH DAKOTA"   "OHIO"          
    [36] "OKLAHOMA"       "OREGON"         "PENNSYLVANIA"   "RHODE ISLAND"   "SOUTH CAROLINA" "SOUTH DAKOTA"   "TENNESSEE"     
    [43] "TEXAS"          "UTAH"           "VERMONT"        "VIRGINIA"       "WASHINGTON"     "WEST VIRGINIA"  "WISCONSIN"     
    [50] "WYOMING"       
    > # 符号替换
    > chartr("Tt", "Uu", "AgCTcctTagct")
    [1] "AgCUccuUagcu"
    > str_replace_all("AgCTcctTagct", pattern = "T", replacement = "U")
    [1] "AgCUcctUagct"
    > # 字符串连接
    > paste("control", 1:3, sep = "_")
    [1] "control_1" "control_2" "control_3"
    > str_c("control", 1:3, sep = "_")
    [1] "control_1" "control_2" "control_3"
    > x <- c("I love R", "I'm fascinated by Statisitcs", "I")
    > # 包含匹配
    > grep(pattern = "love", x = x)
    [1] 1
    > grep(pattern = "love", x = x, value = TRUE)
    [1] "I love R"
    > grepl(pattern = "love", x = x)
    [1]  TRUE FALSE FALSE
    > str_detect(string = x, pattern = "love")
    [1]  TRUE FALSE FALSE
    > # match返回第一个完全匹配的位置
    > match(x = "I",table = x)
    [1] 3
    > "I" %in% x
    [1] TRUE
    > # 字符串拆分
    > text <- "I love R.
    I'm fascinated by Statisitcs."
    > cat(text)
    I love R.
    I'm fascinated by Statisitcs.
    > strsplit(text, split = " ")
    [[1]]
    [1] "I"           "love"        "R.
    I'm"     "fascinated"  "by"          "Statisitcs."
    > strsplit(text, split = "\s")
    [[1]]
    [1] "I"           "love"        "R."          "I'm"         "fascinated"  "by"          "Statisitcs."
    > str_split(text, pattern = "\s")
    [[1]]
    [1] "I"           "love"        "R."          "I'm"         "fascinated"  "by"          "Statisitcs."
    > # 匹配替换
    > test_vector3 <- c("Without the vowels,We can still read the word.")
    > sub(pattern = "[aeiou]",replacement = "-",x = test_vector3)
    [1] "W-thout the vowels,We can still read the word."
    > gsub(pattern = "[aeiou]",replacement = "-",x = test_vector3)
    [1] "W-th--t th- v-w-ls,W- c-n st-ll r--d th- w-rd."
    > str_replace_all(string = test_vector3, pattern = "[aeiou]", 
    +                 replacement = "-")
    [1] "W-th--t th- v-w-ls,W- c-n st-ll r--d th- w-rd."
    > # 字符串定制输出
    > string <- "Each character string in the input is first split into
     paragraphs 
    + (or lines containing whitespace)"
    > strwrap(x = string, width = 30)
    [1] "Each character string in the" "input is first split into"    "paragraphs (or lines"         "containing whitespace)"      
    > str_wrap(string = string, width = 30)
    [1] "Each character string in
    the input is first split
    into paragraphs (or lines
    containing whitespace)"
    > cat(str_wrap(string = string, width = 30))
    Each character string in
    the input is first split
    into paragraphs (or lines
    containing whitespace)
    
  • 相关阅读:
    BZOJ 3668: [Noi2014]起床困难综合症【贪心】
    浅谈错排公式的推导及应用
    Python爬虫笔记(一):爬虫基本入门
    机器理解大数据秘密:聚类算法深度剖析
    想了解概率图模型?你要先理解图论的基本定义与形式
    MATLAB命令大全+注释小结
    【批处理学习笔记】第二十九课:ASCII码
    【批处理学习笔记】第二十八课:声音和控制
    【批处理学习笔记】第二十七课:视窗
    【批处理学习笔记】第二十六课:返回值
  • 原文地址:https://www.cnblogs.com/xihehe/p/8306920.html
Copyright © 2011-2022 走看看