zoukankan      html  css  js  c++  java
  • R语言学习笔记(二十二):字符串处理中的函数对比(代码实现)

    字符串处理中基本函数的使用

    R自带函数与stringr包函数对比

    > states <- row.names(USArrests)
    > # 提取字符串子集
    > substr(x = states, start = 1, stop = 4)
     [1] "Alab" "Alas" "Ariz" "Arka" "Cali" "Colo" "Conn" "Dela" "Flor" "Geor" "Hawa" "Idah" "Illi" "Indi" "Iowa" "Kans" "Kent"
    [18] "Loui" "Main" "Mary" "Mass" "Mich" "Minn" "Miss" "Miss" "Mont" "Nebr" "Neva" "New " "New " "New " "New " "Nort" "Nort"
    [35] "Ohio" "Okla" "Oreg" "Penn" "Rhod" "Sout" "Sout" "Tenn" "Texa" "Utah" "Verm" "Virg" "Wash" "West" "Wisc" "Wyom"
    > abbreviate(states, minlength = 5)
           Alabama         Alaska        Arizona       Arkansas     California       Colorado    Connecticut       Delaware 
           "Alabm"        "Alask"        "Arizn"        "Arkns"        "Clfrn"        "Colrd"        "Cnnct"        "Delwr" 
           Florida        Georgia         Hawaii          Idaho       Illinois        Indiana           Iowa         Kansas 
           "Flord"        "Georg"        "Hawai"        "Idaho"        "Illns"        "Indin"         "Iowa"        "Kanss" 
          Kentucky      Louisiana          Maine       Maryland  Massachusetts       Michigan      Minnesota    Mississippi 
           "Kntck"        "Lousn"        "Maine"        "Mryln"        "Mssch"        "Mchgn"        "Mnnst"        "Mssss" 
          Missouri        Montana       Nebraska         Nevada  New Hampshire     New Jersey     New Mexico       New York 
           "Missr"        "Montn"        "Nbrsk"        "Nevad"        "NwHmp"        "NwJrs"        "NwMxc"        "NwYrk" 
    North Carolina   North Dakota           Ohio       Oklahoma         Oregon   Pennsylvania   Rhode Island South Carolina 
           "NrthC"        "NrthD"         "Ohio"        "Oklhm"        "Oregn"        "Pnnsy"        "RhdIs"        "SthCr" 
      South Dakota      Tennessee          Texas           Utah        Vermont       Virginia     Washington  West Virginia 
           "SthDk"        "Tnnss"        "Texas"         "Utah"        "Vrmnt"        "Virgn"        "Wshng"        "WstVr" 
         Wisconsin        Wyoming 
           "Wscns"        "Wymng" 
    > # 计算字符串长度
    > nchar(states)
     [1]  7  6  7  8 10  8 11  8  7  7  6  5  8  7  4  6  8  9  5  8 13  8  9 11  8  7  8  6 13 10 10  8 14 12  4  8  6 12 12 14 12
    [42]  9  5  4  7  8 10 13  9  7
    > str_count(states)
     [1]  7  6  7  8 10  8 11  8  7  7  6  5  8  7  4  6  8  9  5  8 13  8  9 11  8  7  8  6 13 10 10  8 14 12  4  8  6 12 12 14 12
    [42]  9  5  4  7  8 10 13  9  7
    > str_length(states)
     [1]  7  6  7  8 10  8 11  8  7  7  6  5  8  7  4  6  8  9  5  8 13  8  9 11  8  7  8  6 13 10 10  8 14 12  4  8  6 12 12 14 12
    [42]  9  5  4  7  8 10 13  9  7
    > # 大写和小写
    > tolower(states)     # 变为小写
     [1] "alabama"        "alaska"         "arizona"        "arkansas"       "california"     "colorado"       "connecticut"   
     [8] "delaware"       "florida"        "georgia"        "hawaii"         "idaho"          "illinois"       "indiana"       
    [15] "iowa"           "kansas"         "kentucky"       "louisiana"      "maine"          "maryland"       "massachusetts" 
    [22] "michigan"       "minnesota"      "mississippi"    "missouri"       "montana"        "nebraska"       "nevada"        
    [29] "new hampshire"  "new jersey"     "new mexico"     "new york"       "north carolina" "north dakota"   "ohio"          
    [36] "oklahoma"       "oregon"         "pennsylvania"   "rhode island"   "south carolina" "south dakota"   "tennessee"     
    [43] "texas"          "utah"           "vermont"        "virginia"       "washington"     "west virginia"  "wisconsin"     
    [50] "wyoming"       
    > toupper(states)     # 变为大写
     [1] "ALABAMA"        "ALASKA"         "ARIZONA"        "ARKANSAS"       "CALIFORNIA"     "COLORADO"       "CONNECTICUT"   
     [8] "DELAWARE"       "FLORIDA"        "GEORGIA"        "HAWAII"         "IDAHO"          "ILLINOIS"       "INDIANA"       
    [15] "IOWA"           "KANSAS"         "KENTUCKY"       "LOUISIANA"      "MAINE"          "MARYLAND"       "MASSACHUSETTS" 
    [22] "MICHIGAN"       "MINNESOTA"      "MISSISSIPPI"    "MISSOURI"       "MONTANA"        "NEBRASKA"       "NEVADA"        
    [29] "NEW HAMPSHIRE"  "NEW JERSEY"     "NEW MEXICO"     "NEW YORK"       "NORTH CAROLINA" "NORTH DAKOTA"   "OHIO"          
    [36] "OKLAHOMA"       "OREGON"         "PENNSYLVANIA"   "RHODE ISLAND"   "SOUTH CAROLINA" "SOUTH DAKOTA"   "TENNESSEE"     
    [43] "TEXAS"          "UTAH"           "VERMONT"        "VIRGINIA"       "WASHINGTON"     "WEST VIRGINIA"  "WISCONSIN"     
    [50] "WYOMING"       
    > # 符号替换
    > chartr("Tt", "Uu", "AgCTcctTagct")
    [1] "AgCUccuUagcu"
    > str_replace_all("AgCTcctTagct", pattern = "T", replacement = "U")
    [1] "AgCUcctUagct"
    > # 字符串连接
    > paste("control", 1:3, sep = "_")
    [1] "control_1" "control_2" "control_3"
    > str_c("control", 1:3, sep = "_")
    [1] "control_1" "control_2" "control_3"
    > x <- c("I love R", "I'm fascinated by Statisitcs", "I")
    > # 包含匹配
    > grep(pattern = "love", x = x)
    [1] 1
    > grep(pattern = "love", x = x, value = TRUE)
    [1] "I love R"
    > grepl(pattern = "love", x = x)
    [1]  TRUE FALSE FALSE
    > str_detect(string = x, pattern = "love")
    [1]  TRUE FALSE FALSE
    > # match返回第一个完全匹配的位置
    > match(x = "I",table = x)
    [1] 3
    > "I" %in% x
    [1] TRUE
    > # 字符串拆分
    > text <- "I love R.
    I'm fascinated by Statisitcs."
    > cat(text)
    I love R.
    I'm fascinated by Statisitcs.
    > strsplit(text, split = " ")
    [[1]]
    [1] "I"           "love"        "R.
    I'm"     "fascinated"  "by"          "Statisitcs."
    > strsplit(text, split = "\s")
    [[1]]
    [1] "I"           "love"        "R."          "I'm"         "fascinated"  "by"          "Statisitcs."
    > str_split(text, pattern = "\s")
    [[1]]
    [1] "I"           "love"        "R."          "I'm"         "fascinated"  "by"          "Statisitcs."
    > # 匹配替换
    > test_vector3 <- c("Without the vowels,We can still read the word.")
    > sub(pattern = "[aeiou]",replacement = "-",x = test_vector3)
    [1] "W-thout the vowels,We can still read the word."
    > gsub(pattern = "[aeiou]",replacement = "-",x = test_vector3)
    [1] "W-th--t th- v-w-ls,W- c-n st-ll r--d th- w-rd."
    > str_replace_all(string = test_vector3, pattern = "[aeiou]", 
    +                 replacement = "-")
    [1] "W-th--t th- v-w-ls,W- c-n st-ll r--d th- w-rd."
    > # 字符串定制输出
    > string <- "Each character string in the input is first split into
     paragraphs 
    + (or lines containing whitespace)"
    > strwrap(x = string, width = 30)
    [1] "Each character string in the" "input is first split into"    "paragraphs (or lines"         "containing whitespace)"      
    > str_wrap(string = string, width = 30)
    [1] "Each character string in
    the input is first split
    into paragraphs (or lines
    containing whitespace)"
    > cat(str_wrap(string = string, width = 30))
    Each character string in
    the input is first split
    into paragraphs (or lines
    containing whitespace)
    
  • 相关阅读:
    java 接口和抽象类的一个最大的区别
    python 简化数据结构的初始化二 支持关键字参数
    python 简化数据结构的初始化一
    python @staticmethod
    python @classmethod
    codeskulptor hosts
    An Introduction to Interactive Programming in Python (Part 1) -- Week 2_2 练习
    An Introduction to Interactive Programming in Python (Part 1) -- Week 2_1 练习
    mysql-5.7.14-winx64免安装版在win10下的详细配置过程
    python 反模式
  • 原文地址:https://www.cnblogs.com/xihehe/p/8306920.html
Copyright © 2011-2022 走看看