zoukankan      html  css  js  c++  java
  • AOV网络拓扑排序

    这个算法,主要是为输出一个无环图的拓扑序列

    算法思想:

    主要依赖一个栈,用来存放没有入度的节点,每次读取栈顶元素,并将栈顶元素的后继节点入度减一,如果再次出现入度为零的节点,就加入到栈中。参考《大话数据结构》,写下下面完整代码,并发现,其中程序的进行,出现错误。v6执行完,应该执行v9,因为此时v9是站顶元素,并不是v0.

    算法流程:

    int topGraph(graph g){
        EdgeNode *e;
        int i,k,gettop;
        int top = 0 ;
        int count = 0;
        int *stack;
        stack = (int *)malloc(g->numVertexes * sizeof(int));
        for(i=0;i<g->numVertexes;i++){ 
            if(g->headlist[i].in == 0) //把入度为0的,即没有入度的点入栈
                stack[++top] = i;
        }
        while(top){
            gettop = stack[top--];
            printf("%d ",gettop);
            count++;
            for(e = g->headlist[gettop].fnode; e ; e=e->next){ //一次遍历链表,减少各个子节点的入度
                k = e->data;
                if(!(--g->headlist[k].in))
                    stack[++top] = k;
            }
        }
        if(count < g->numVertexes)
            return ERROR;
        else
            return OK;
    }

    全部代码:

    #include <stdio.h>
    #include <stdlib.h>
    #define MAX 14
    #define ERROR 1
    #define OK 0
    typedef struct edgeNode{
        int data;
        struct edgeNode *next;
    }EdgeNode;
    typedef struct headNode{
        int in;
        int data;
        EdgeNode *fnode;
    }HeadNode,HeadList[MAX];
    typedef struct{
        HeadList headlist;
        int numEdges,numVertexes;
    }Graph,*graph;
    
    void initGraph(graph g);
    int inputInfo(graph g,int tar,int in,int data,int first);
    void printGraph(graph g);
    int topGraph(graph g);
    int main(){
        Graph *g = (Graph *)malloc(sizeof(Graph));
        initGraph(g);
        printGraph(g);
    
        if(topGraph(g) == ERROR)
            printf("有环路!
    ");
        else
            printf("没有环路!
    ");
    
        free(g);
        getchar();
        return 0;
    }
    int topGraph(graph g){
        EdgeNode *e;
        int i,k,gettop;
        int top = 0 ;
        int count = 0;
        int *stack;
        stack = (int *)malloc(g->numVertexes * sizeof(int));
        for(i=0;i<g->numVertexes;i++){ 
            if(g->headlist[i].in == 0) //把入度为0的,即没有入度的点入栈
                stack[++top] = i;
        }
        while(top){
            gettop = stack[top--];
            printf("%d ",gettop);
            count++;
            for(e = g->headlist[gettop].fnode; e ; e=e->next){ //一次遍历链表,减少各个子节点的入度
                k = e->data;
                if(!(--g->headlist[k].in))
                    stack[++top] = k;
            }
        }
        if(count < g->numVertexes)
            return ERROR;
        else
            return OK;
    }
    void printGraph(graph g){
        int i;
        printf("vertex:%d,edges:%d
    ",g->numVertexes,g->numEdges);
        EdgeNode *e = (EdgeNode *)malloc(sizeof(EdgeNode));
        for(i=0;i<MAX;i++){
            printf("[in:%d]%d",g->headlist[i].in,g->headlist[i].data);    
            e = g->headlist[i].fnode;
            while(e != NULL){    
                printf("->%d",e->data);
                e = e->next;
            }    
            printf("
    ");
        }
        free(e);
    }
    void initGraph(graph g){
        g->numVertexes = MAX;
        g->numEdges = 0;
        int i;
        for(i=0;i<MAX;i++){
            g->headlist[i].fnode = NULL;
        }
        inputInfo(g,0,0,0,4);
        inputInfo(g,0,0,0,5);
        inputInfo(g,0,0,0,11);
    
        inputInfo(g,1,0,1,2);
        inputInfo(g,1,0,1,4);
        inputInfo(g,1,0,1,8);
    
        inputInfo(g,2,2,2,5);
        inputInfo(g,2,2,2,6);
        inputInfo(g,2,2,2,9);
    
        inputInfo(g,3,0,3,2);
        inputInfo(g,3,0,3,13);
    
        inputInfo(g,4,2,4,7);
    
        inputInfo(g,5,3,5,8);
        inputInfo(g,5,3,5,12);
    
        inputInfo(g,6,1,6,5);
    
        inputInfo(g,7,2,7,-1);
    
        inputInfo(g,8,2,8,7);
    
        inputInfo(g,9,1,9,10);
        inputInfo(g,9,1,9,11);
    
        inputInfo(g,10,1,10,13);
    
        inputInfo(g,11,2,11,-1);
    
        inputInfo(g,12,1,12,9);
    
        inputInfo(g,13,2,13,-1);
    }
    int inputInfo(graph g,int tar,int in,int data,int first){
        g->numEdges++;
        
        if(first == -1){ //没有后继的边节点
            g->headlist[tar].in = in;
            g->headlist[tar].data = data;
            return 1;
        }
    
        if(!g->headlist[tar].fnode){ //观察是否已经初始化
            g->headlist[tar].in = in;
            g->headlist[tar].data = data;
        }
        EdgeNode *e = (EdgeNode *)malloc(sizeof(EdgeNode));
        e->data = first;
        e->next = g->headlist[tar].fnode;
        g->headlist[tar].fnode = e;
        return 0;
    }

    执行示例:

  • 相关阅读:
    vsftp搭建
    进程管理相关命令(15 个)
    系统管理与性能监视命令 (9 个)
    系统权限及用户授权相关命令(4 个)
    用户管理命令(10个命令)
    深入网络操作命令(9条命令)
    查看系统用户登陆信息的命令(7 个)
    查看文件及内容处理命令(21个命令)
    有关磁盘与文件系统的命令(16个命令)
    linux kernel bisops.h
  • 原文地址:https://www.cnblogs.com/xing901022/p/3618729.html
Copyright © 2011-2022 走看看