zoukankan      html  css  js  c++  java
  • A strange lift(Dijistra优化)

    A strange lift

    Problem Description
    There is a strange lift.The lift can stop can at every floor as you want, and there is a number Ki(0 <= Ki <= N) on every floor.The lift have just two buttons: up and down.When you at floor i,if you press the button "UP" , you will go up Ki floor,i.e,you will go to the i+Ki th floor,as the same, if you press the button "DOWN" , you will go down Ki floor,i.e,you will go to the i-Ki th floor. Of course, the lift can't go up high than N,and can't go down lower than 1. For example, there is a buliding with 5 floors, and k1 = 3, k2 = 3,k3 = 1,k4 = 2, k5 = 5.Begining from the 1 st floor,you can press the button "UP", and you'll go up to the 4 th floor,and if you press the button "DOWN", the lift can't do it, because it can't go down to the -2 th floor,as you know ,the -2 th floor isn't exist.
    Here comes the problem: when you are on floor A,and you want to go to floor B,how many times at least he has to press the button "UP" or "DOWN"?
     
    Input
    The input consists of several test cases.,Each test case contains two lines.
    The first line contains three integers N ,A,B( 1 <= N,A,B <= 200) which describe above,The second line consist N integers k1,k2,....kn.
    A single 0 indicate the end of the input.
     
    Output
    For each case of the input output a interger, the least times you have to press the button when you on floor A,and you want to go to floor B.If you can't reach floor B,printf "-1".
     
    Sample Input
    5 1 5
    3 3 1 2 5
    0
     
    Sample Output
    3
     
    这题一开始用基本的dijistra老是时间超限,就试了优化了的,运行时间就变15ms了,快多了。
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <vector>
     5 #include <queue>
     6 using namespace std;
     7 const int N = 220;
     8 const int INF = 1e7;
     9 int d[N], n, a, b;
    10 
    11 struct edge{
    12     int to, cost;
    13 };
    14 vector<edge> g[N];
    15 typedef pair<int,int> P;
    16 void dijistra(int s){
    17     priority_queue<P,vector<P>,greater<P> > que;
    18     d[a] = 0;
    19     que.push(P(0,s));
    20     while(!que.empty()){
    21         P p = que.top();que.pop();
    22         int v = p.second;
    23         if(d[v] < p.first) continue;
    24         for(int i = 0; i < g[v].size(); i ++){
    25             edge e = g[v][i];
    26             if(d[e.to] > d[v] + e.cost){
    27                 d[e.to] = d[v] + e.cost;
    28                 que.push(P(d[e.to],e.to));
    29             }
    30         }
    31     }
    32 }
    33 
    34 
    35 int main(){
    36     while(~scanf("%d",&n)&&n){
    37         for(int i = 0; i < N; i ++){
    38             d[i] = INF;
    39             g[i].clear();
    40         }
    41         scanf("%d %d",&a,&b);
    42         for(int i = 1; i <= n; i ++){
    43             int tmp;
    44             edge e;
    45             scanf("%d",&tmp);
    46             if(i-tmp > 0){
    47                 e.to = i-tmp;
    48                 e.cost = 1;
    49                 g[i].push_back(e);
    50             }
    51             if(i+tmp <= n){
    52                 e.to = i + tmp;
    53                 e.cost = 1;
    54                 g[i].push_back(e);
    55             }
    56         }
    57         dijistra(a);
    58         printf("%d
    ",(d[b]==INF)?-1:d[b]);
    59     }
    60     return 0;
    61 }
  • 相关阅读:
    三角函数图像平移后重合对称
    三角恒等式的证明
    三角函数给值求角
    三角方程的解法
    空间中线面位置关系的证明思路
    实时会议
    LATEX 公式总结
    三维重建的应用
    会议
    计算机图形学学习笔记
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/6817286.html
Copyright © 2011-2022 走看看