zoukankan      html  css  js  c++  java
  • 2017 Multi-University Training Contest

    Problem Description
    On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
     
    Input
    The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
     
    Output
    For each case, output a number means how many different regular polygon these points can make.
     
    Sample Input
    4
    0 0
    0 1
    1 0
    1 1
    6
    0 0
    0 1
    1 0
    1 1
    2 0
    2 1
     
    Sample Output
    1
    2
     
    判断有多少个正方形,几何题目。
    假设正方形的四个点 左下(x1,y1),右下(x2,y2),右上(x3,y3),左上(x4,y4),其中(x1,y1)和(x3,y3)是一对对角点。一定有y3-y1 = x3-x1。
    (nx+dy)&1 和(ny+dx)&1 不成立时,说明这两个点一定不能组成一个正方形的对角点,以(x1,y1),(x3,y3)当例子,(nx+dy) = x1+x3+y3-y1 = x1+x3+x3-x1 = 2*x3,
    ny+dx = y1+y3+y3-y1 = 2*y3,一定不是奇数。其中((nx+dy)/2,(ny+sg*dx)/2)是求(x3,y1)即(x2,y2),((nx-dy)/2,(ny-sg*dx)/2)是求(x1,y3)即(x4,y4)。
    由于一个正方形重复计算了两遍,结果除2就是答案了。
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <set>
     5 using namespace std;
     6 int x[550], y[550];
     7 int main() {
     8     int n;
     9     while(scanf("%d",&n)!=EOF) {
    10         set<pair<int,int> > st;
    11         for(int i = 0; i < n; i ++) {
    12             scanf("%d%d",&x[i],&y[i]);
    13             st.insert(make_pair(x[i],y[i]));
    14         }
    15         int ans = 0;
    16         for(int i = 0; i < n; i ++) {
    17             for(int j = i+1; j < n; j ++) {
    18                 int nx = x[i]+x[j], dx = max(x[i],x[j])-min(x[i],x[j]);
    19                 int ny = y[i]+y[j], dy = max(y[i],y[j])-min(y[i],y[j]);
    20                 if((nx+dy)&1 || (ny+dx)&1) continue;
    21                 int sg = ((x[i]-x[j])*(y[i]-y[j]) < 0)?1:-1;
    22                 if(st.count(make_pair((nx+dy)/2,(ny+sg*dx)/2)) && st.count(make_pair((nx-dy)/2,(ny-sg*dx)/2)))
    23                     ans++;
    24             }
    25         }
    26         printf("%d
    ",ans/2);
    27     }
    28     return 0;
    29 }
  • 相关阅读:
    Unity5和WebGL移植指南的一些总结
    Unite洛杉矶峰会精彩回顾:从图形、平台再到VR
    比代码更重要的是团队管理
    初期游戏编程的9大法则
    关于Unity3D手机网游开发一些小看法
    守住真我
    学习要讲方法
    学习笔记|编程风格
    随便记
    微信方法
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7248716.html
Copyright © 2011-2022 走看看