zoukankan      html  css  js  c++  java
  • 2017 Multi-University Training Contest

    Problem Description
    On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
     
    Input
    The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
     
    Output
    For each case, output a number means how many different regular polygon these points can make.
     
    Sample Input
    4
    0 0
    0 1
    1 0
    1 1
    6
    0 0
    0 1
    1 0
    1 1
    2 0
    2 1
     
    Sample Output
    1
    2
     
    判断有多少个正方形,几何题目。
    假设正方形的四个点 左下(x1,y1),右下(x2,y2),右上(x3,y3),左上(x4,y4),其中(x1,y1)和(x3,y3)是一对对角点。一定有y3-y1 = x3-x1。
    (nx+dy)&1 和(ny+dx)&1 不成立时,说明这两个点一定不能组成一个正方形的对角点,以(x1,y1),(x3,y3)当例子,(nx+dy) = x1+x3+y3-y1 = x1+x3+x3-x1 = 2*x3,
    ny+dx = y1+y3+y3-y1 = 2*y3,一定不是奇数。其中((nx+dy)/2,(ny+sg*dx)/2)是求(x3,y1)即(x2,y2),((nx-dy)/2,(ny-sg*dx)/2)是求(x1,y3)即(x4,y4)。
    由于一个正方形重复计算了两遍,结果除2就是答案了。
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <set>
     5 using namespace std;
     6 int x[550], y[550];
     7 int main() {
     8     int n;
     9     while(scanf("%d",&n)!=EOF) {
    10         set<pair<int,int> > st;
    11         for(int i = 0; i < n; i ++) {
    12             scanf("%d%d",&x[i],&y[i]);
    13             st.insert(make_pair(x[i],y[i]));
    14         }
    15         int ans = 0;
    16         for(int i = 0; i < n; i ++) {
    17             for(int j = i+1; j < n; j ++) {
    18                 int nx = x[i]+x[j], dx = max(x[i],x[j])-min(x[i],x[j]);
    19                 int ny = y[i]+y[j], dy = max(y[i],y[j])-min(y[i],y[j]);
    20                 if((nx+dy)&1 || (ny+dx)&1) continue;
    21                 int sg = ((x[i]-x[j])*(y[i]-y[j]) < 0)?1:-1;
    22                 if(st.count(make_pair((nx+dy)/2,(ny+sg*dx)/2)) && st.count(make_pair((nx-dy)/2,(ny-sg*dx)/2)))
    23                     ans++;
    24             }
    25         }
    26         printf("%d
    ",ans/2);
    27     }
    28     return 0;
    29 }
  • 相关阅读:
    我来说说博客评论的事
    SWFUpload+Javascript仿163邮件上传文件
    如何暂停和终止线程
    分享我的数据处理类库,欢迎拍砖
    求数列两两之差,再求和
    poj 1006 中国剩余定理
    Poj算法做题顺序
    poj 1328
    ZOJ 3279
    poj 2352 树状数组
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7248716.html
Copyright © 2011-2022 走看看