zoukankan      html  css  js  c++  java
  • 2017 Multi-University Training Contest

    Problem Description
    On a two-dimensional plane, give you n integer points. Your task is to figure out how many different regular polygon these points can make.
     
    Input
    The input file consists of several test cases. Each case the first line is a numbers N (N <= 500). The next N lines ,each line contain two number Xi and Yi(-100 <= xi,yi <= 100), means the points’ position.(the data assures no two points share the same position.)
     
    Output
    For each case, output a number means how many different regular polygon these points can make.
     
    Sample Input
    4
    0 0
    0 1
    1 0
    1 1
    6
    0 0
    0 1
    1 0
    1 1
    2 0
    2 1
     
    Sample Output
    1
    2
     
    判断有多少个正方形,几何题目。
    假设正方形的四个点 左下(x1,y1),右下(x2,y2),右上(x3,y3),左上(x4,y4),其中(x1,y1)和(x3,y3)是一对对角点。一定有y3-y1 = x3-x1。
    (nx+dy)&1 和(ny+dx)&1 不成立时,说明这两个点一定不能组成一个正方形的对角点,以(x1,y1),(x3,y3)当例子,(nx+dy) = x1+x3+y3-y1 = x1+x3+x3-x1 = 2*x3,
    ny+dx = y1+y3+y3-y1 = 2*y3,一定不是奇数。其中((nx+dy)/2,(ny+sg*dx)/2)是求(x3,y1)即(x2,y2),((nx-dy)/2,(ny-sg*dx)/2)是求(x1,y3)即(x4,y4)。
    由于一个正方形重复计算了两遍,结果除2就是答案了。
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <string.h>
     4 #include <set>
     5 using namespace std;
     6 int x[550], y[550];
     7 int main() {
     8     int n;
     9     while(scanf("%d",&n)!=EOF) {
    10         set<pair<int,int> > st;
    11         for(int i = 0; i < n; i ++) {
    12             scanf("%d%d",&x[i],&y[i]);
    13             st.insert(make_pair(x[i],y[i]));
    14         }
    15         int ans = 0;
    16         for(int i = 0; i < n; i ++) {
    17             for(int j = i+1; j < n; j ++) {
    18                 int nx = x[i]+x[j], dx = max(x[i],x[j])-min(x[i],x[j]);
    19                 int ny = y[i]+y[j], dy = max(y[i],y[j])-min(y[i],y[j]);
    20                 if((nx+dy)&1 || (ny+dx)&1) continue;
    21                 int sg = ((x[i]-x[j])*(y[i]-y[j]) < 0)?1:-1;
    22                 if(st.count(make_pair((nx+dy)/2,(ny+sg*dx)/2)) && st.count(make_pair((nx-dy)/2,(ny-sg*dx)/2)))
    23                     ans++;
    24             }
    25         }
    26         printf("%d
    ",ans/2);
    27     }
    28     return 0;
    29 }
  • 相关阅读:
    在公网上搭建的svn的经验
    Android postTranslate和preTranslate的理解
    archlinux pacman 报error 的解决办法
    C# .net 子类序列化时无法识别的解决办法
    eclipse 打开已有的项目
    .net 自带的md5 加密
    C#.NET里原型的解释和应用浅表复制和深表复制
    android开发中fragment的引用以及fragment与activity之间通信的概述
    Android通过http方式获取JSON字符串并解析的注意事项(乱码,小黑框)
    .NET 序列化 "该类型不能序列化"
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/7248716.html
Copyright © 2011-2022 走看看