You are given a graph with n nodes and m directed edges. One lowercase letter is assigned to each node. We define a path's value as the number of the most frequently occurring letter. For example, if letters on a path are "abaca", then the value of that path is 3. Your task is find a path whose value is the largest.
The first line contains two positive integers n, m (1 ≤ n, m ≤ 300 000), denoting that the graph has n nodes and m directed edges.
The second line contains a string s with only lowercase English letters. The i-th character is the letter assigned to the i-th node.
Then m lines follow. Each line contains two integers x, y (1 ≤ x, y ≤ n), describing a directed edge from x to y. Note that x can be equal to y and there can be multiple edges between x and y. Also the graph can be not connected.
Output a single line with a single integer denoting the largest value. If the value can be arbitrarily large, output -1 instead.
5 4
abaca
1 2
1 3
3 4
4 5
3
6 6
xzyabc
1 2
3 1
2 3
5 4
4 3
6 4
-1
10 14
xzyzyzyzqx
1 2
2 4
3 5
4 5
2 6
6 8
6 5
2 10
3 9
10 9
4 6
1 10
2 8
3 7
4
In the first sample, the path with largest value is 1 → 3 → 4 → 5. The value is 3 because the letter 'a' appears 3 times.
有n个节点和m条边,图是有向的,每个节点有一个小写字符,求一条路径中出现相同字符最大的数量。
dfs+dp问题,dp[i][j]表示以i节点开始的路径中字母'a'+j出现的最大次数。然后j遍历0-26,就可以求出最大值了。
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5+10;
char str[N];
int n, m, x, y, ans;
vector<int> vs[N];
int vis[N];
int dp[N][26];
void dfs(int u) {
vis[u] = 1;
dp[u][str[u]-'a'] = 1;
for(int i = 0; i < vs[u].size(); i ++) {
int v = vs[u][i];
if(vis[v] == 1) {
printf("-1
");
exit(0);
} else{
if(!vis[v]) dfs(v);
for(int j = 0; j < 26; j ++) {
dp[u][j] = max(dp[u][j],dp[v][j]+(str[u]-'a' == j));
}
}
}
vis[u] = 2;
}
int main() {
ios::sync_with_stdio(false);
cin >> n >> m;
cin >> str+1;
for(int i = 0; i < m; i ++) {
cin >> x >> y;
vs[x].push_back(y);
}
memset(vis,0,sizeof(vis));
memset(dp,0,sizeof(dp));
for(int i = 1; i <= n; i ++) {
if(!vis[i]) {
dfs(i);
for(int j = 0; j < 26; j ++) {
ans = max(ans,dp[i][j]);
}
}
}
cout << ans << endl;
return 0;
}