zoukankan      html  css  js  c++  java
  • Codeforces Round #461 (Div. 2) ABC

    A. Cloning Toys

    Recently, he found a machine that can clone plush toys. Imp knows that if he applies the machine to an original toy, he additionally gets one more original toy and one copy, and if he applies the machine to a copied toy, he gets two additional copies.

    Initially, Imp has only one original toy. He wants to know if it is possible to use machine to get exactly x copied toys and y original toys? He can't throw toys away, and he can't apply the machine to a copy if he doesn't currently have any copies.

    Input

    The only line contains two integers x and y (0 ≤ x, y ≤ 109) — the number of copies and the number of original toys Imp wants to get (including the initial one).

    Output

    Print "Yes", if the desired configuration is possible, and "No" otherwise.

    You can print each letter in arbitrary case (upper or lower).

    Examples
    input
    Copy
    6 3
    output
    Copy
    Yes
    input
    Copy
    4 2
    output
    Copy
    No
    input
    Copy
    1000 1001
    output
    Copy
    Yes
    Note

    In the first example, Imp has to apply the machine twice to original toys and then twice to copies.

    初始x = 0, y = 1,用1个y可以得到1个x和1个y,用1个x可以得到2个x,问给定的(x,y)是否可以根据给定的规则得到。

    #include <bits/stdc++.h>
    using namespace std;
    
    int main() {
    	int x, y;
    	cin >> x >>y;
    	if(y==0||(y==1&&x)||x<y-1||(x-y)%2==0)printf("No
    ");
    	else printf("Yes
    ");
    	return 0;
    }
    

      

    B. Magic Forest

    Imp is in a magic forest, where xorangles grow (wut?)

    A xorangle of order n is such a non-degenerate triangle, that lengths of its sides are integers not exceeding n, and the xor-sum of the lengths is equal to zero. Imp has to count the number of distinct xorangles of order n to get out of the forest.

    Formally, for a given integer n you have to find the number of such triples (a, b, c), that:

    • 1 ≤ a ≤ b ≤ c ≤ n;
    • , where  denotes the bitwise xor of integers x and y.
    • (a, b, c) form a non-degenerate (with strictly positive area) triangle.
    Input

    The only line contains a single integer n (1 ≤ n ≤ 2500).

    Output

    Print the number of xorangles of order n.

    Examples
    input
    Copy
    6
    output
    Copy
    1
    input
    Copy
    10
    output
    Copy
    2
    Note

    The only xorangle in the first sample is (3, 5, 6).

     为是否有这样的三角形边满足i^j^k等于0,只要得到i^j  满足x [j,n]且能构成三角形即可

    #include <bits/stdc++.h>
    using namespace std;
    
    int main() {
    	int n, ans = 0;
    	cin >> n;
    	for(int i = 1; i <= n; i ++) {
    		for(int j = i; j <= n; j ++) {
    			int x = i^j;
    			if(x >= j && i+j > x && x <= n) ans++;
    		}
    	}
    	cout << ans<<endl;
    	return 0;
    }
    

      

    C. Cave Painting

    Imp is watching a documentary about cave painting.

    Some numbers, carved in chaotic order, immediately attracted his attention. Imp rapidly proposed a guess that they are the remainders of division of a number n by all integers i from 1 to k. Unfortunately, there are too many integers to analyze for Imp.

    Imp wants you to check whether all these remainders are distinct. Formally, he wants to check, if all 1 ≤ i ≤ k, are distinct, i. e. there is no such pair (i, j) that:

    • 1 ≤ i < j ≤ k,
    • , where  is the remainder of division x by y.
    Input

    The only line contains two integers nk (1 ≤ n, k ≤ 1018).

    Output

    Print "Yes", if all the remainders are distinct, and "No" otherwise.

    You can print each letter in arbitrary case (lower or upper).

    Examples
    input
    Copy
    4 4
    output
    Copy
    No
    input
    Copy
    5 3
    output
    Copy
    Yes
    Note

    In the first sample remainders modulo 1 and 4 coincide.

     给定n,k。求n%1,n%2...n%k  是否是k个不同的数,是就是yes,否则就是no。

    n%1 = 0,n%2 = (0|1)

    由于n%1=0,所以n%2一定要等于1才行,n%3=(0|1|2) 所以一定要等于2

    即n%i = i-1才行,有一个不成立就是No

    #include <bits/stdc++.h>
    using namespace std;
    #define ll long long
    int main() {
    	ll n, k;
    	cin >> n >> k;
    	bool flag = true;
    	for(ll i = 1; i <= k; i ++) {
    		if(n%i != i-1) {
    			flag = false;
    			break;
    		}
    	}
    	if(flag) printf("Yes
    ");
    	else printf("No
    ");
    	return 0;
    }
    

      

  • 相关阅读:
    IntelliJ IDEA 偏好设置
    Unix环境下的5中IO模型
    Hbase原理、基本概念、基本架构
    可参考的技术博客
    Hadoop生态系统介绍
    oracle 添加表分区和索引分区,修改索引分区默认表空间
    koa redis 链接
    Node-APN 开源推送服务
    NodeJs 笔记
    windows防火墙无法启动,服务不存在
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/8819268.html
Copyright © 2011-2022 走看看