zoukankan      html  css  js  c++  java
  • ICM Technex 2018 and Codeforces Round #463 ABC

    A. Palindromic Supersequence

     

    You are given a string A. Find a string B, where B is a palindrome and A is a subsequence of B.

    A subsequence of a string is a string that can be derived from it by deleting some (not necessarily consecutive) characters without changing the order of the remaining characters. For example, "cotst" is a subsequence of "contest".

    A palindrome is a string that reads the same forward or backward.

    The length of string B should be at most 104. It is guaranteed that there always exists such string.

    You do not need to find the shortest answer, the only restriction is that the length of string B should not exceed 104.

    Input

    First line contains a string A (1 ≤ |A| ≤ 103) consisting of lowercase Latin letters, where |A| is a length of A.

    Output

    Output single line containing B consisting of only lowercase Latin letters. You do not need to find the shortest answer, the only restriction is that the length of string B should not exceed 104. If there are many possible B, print any of them.

    Examples
    input
    Copy
    aba
    output
    Copy
    aba
    input
    Copy
    ab
    output
    Copy
    aabaa
    Note

    In the first example, "aba" is a subsequence of "aba" which is a palindrome.

    In the second example, "ab" is a subsequence of "aabaa" which is a palindrome.

     s+reverse(s)

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 char str[1010];
     4 int main() {
     5     cin >> str;
     6     int len = strlen(str);
     7     cout << str;
     8     for(int i = len-1; i >= 0; i --) cout << str[i];
     9     cout << endl;
    10     return 0;
    11 }

    B. Recursive Queries

     

    Let us define two functions f and g on positive integer numbers.

    You need to process Q queries. In each query, you will be given three integers lr and k. You need to print the number of integers xbetween l and r inclusive, such that g(x) = k.

    Input

    The first line of the input contains an integer Q (1 ≤ Q ≤ 2 × 105) representing the number of queries.

    Q lines follow, each of which contains 3 integers lr and k (1 ≤ l ≤ r ≤ 106, 1 ≤ k ≤ 9).

    Output

    For each query, print a single line containing the answer for that query.

    Examples
    input
    Copy
    4
    22 73 9
    45 64 6
    47 55 7
    2 62 4
    output
    Copy
    1
    4
    0
    8
    input
    Copy
    4
    82 94 6
    56 67 4
    28 59 9
    39 74 4
    output
    Copy
    3
    1
    1
    5
    Note

    In the first example:

    • g(33) = 9 as g(33) = g(3 × 3) = g(9) = 9
    • g(47) = g(48) = g(60) = g(61) = 6
    • There are no such integers between 47 and 55.
    • g(4) = g(14) = g(22) = g(27) = g(39) = g(40) = g(41) = g(58) = 4

     dfs预处理1e6,然后查询的话就直接查询了。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int N = 1e6+10;
     4 int g[N], vis[N][10];
     5 int dfs(int x) {
     6     if(x < 10) return x;
     7     int ans = 1, tmp = x;
     8     while(tmp) {
     9         if(tmp%10) ans *= tmp%10;
    10         tmp /= 10;
    11     }
    12     g[x] = ans>=10?dfs(ans):ans;
    13     return g[x];
    14 }
    15 int main() {
    16     for(int i = 1; i <= N; i ++) {
    17         if(!g[i]) g[i] = dfs(i);
    18     }
    19     for(int i = 1; i <= N; i ++) {
    20         for(int j = 1; j < 10; j ++) {
    21             vis[i][j] = vis[i-1][j] + (j==g[i]);
    22         }
    23     }
    24     int q, l, r, k;
    25     cin >> q;
    26     while(q--) {
    27         cin >> l >> r >> k;
    28         cout << vis[r][k] - vis[l-1][k] << endl;
    29     }
    30     return 0;
    31 }

    C. Permutation Cycle

    For a permutation P[1... N] of integers from 1 to N, function f is defined as follows:

    Let g(i) be the minimum positive integer j such that f(i, j) = i. We can show such j always exists.

    For given N, A, B, find a permutation P of integers from 1 to N such that for 1 ≤ i ≤ Ng(i) equals either A or B.

    Input

    The only line contains three integers N, A, B (1 ≤ N ≤ 106, 1 ≤ A, B ≤ N).

    Output

    If no such permutation exists, output -1. Otherwise, output a permutation of integers from 1 to N.

    Examples
    input
    Copy
    9 2 5
    output
    Copy
    6 5 8 3 4 1 9 2 7
    input
    Copy
    3 2 1
    output
    Copy
    1 2 3 
    Note

    In the first example, g(1) = g(6) = g(7) = g(9) = 2 and g(2) = g(3) = g(4) = g(5) = g(8) = 5

    In the second example, g(1) = g(2) = g(3) = 1

     

     求循环节。只要有存在ax+by=n就不是-1,然后按a、b的循环。

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 const int N = 1e6+10;
     4 int p[N];
     5 int main() {
     6     int n, a, b, x, y;
     7     cin >> n >> a >> b;
     8     for(x = 0; x <= n; x ++) {
     9         int ans = n-x*a;
    10         if(ans < 0) break;
    11         if(ans >= 0 && ans%b==0) {
    12             y = ans/b;
    13             break;
    14         }
    15     }
    16     if(x*a > n) printf("-1
    ");
    17     else{
    18         for(int i = 0; i < x; i ++) {
    19             p[i*a+1] = (i+1)*a;
    20             for(int j = i*a+2; j <= (i+1)*a; j ++) {
    21                 p[j] = j-1;
    22             }
    23         }
    24         for(int i = 0; i < y; i ++) {
    25             p[a*x+i*b+1] = (i+1)*b+a*x;
    26             for(int j = x*a+i*b+2; j <= (i+1)*b+a*x; j ++) {
    27                 p[j] = j-1;
    28             }
    29         }
    30         for(int i = 1; i <= n; i ++) {
    31             printf("%d ",p[i]);
    32         }
    33     }
    34     return 0;
    35 }
  • 相关阅读:
    【净界法师】【唯识三十颂05】《唯识三十颂》,什么是唯识呢?
    再谈呼吸调匀、全身放松之重要性
    何时该修十善,何时该念佛
    如何降服贪心
    用内观法切断欲望有何弊病
    洛桑陀美上师开示 | 如何遮止并断除贪爱?
    断除贪爱执着,才可以超越一切局限
    【佛子行浅释】逢遇悦意对境时, 视如夏季之彩虹, 虽显美妙然无实, 断除贪执佛子行。
    佛弟子如何断除对异性的贪爱与相思?益西彭措堪布超级精彩开示
    感人!北大博士出家前写给父母的信
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/8885211.html
Copyright © 2011-2022 走看看