zoukankan      html  css  js  c++  java
  • hdu6397 Character Encoding 多校第8场1001

    Problem Description

    In computer science, a character is a letter, a digit, a punctuation mark or some other similar symbol. Since computers can only process numbers, number codes are used to represent characters, which is known as character encoding. A character encoding system establishes a bijection between the elements of an alphabet of a certain size n and integers from 0 to n1. Some well known character encoding systems include American Standard Code for Information Interchange (ASCII), which has an alphabet size 128, and the extended ASCII, which has an alphabet size 256.

    For example, in ASCII encoding system, the word wdy is encoded as [119, 100, 121], while jsw is encoded as [106, 115, 119]. It can be noticed that both 119+100+121=340 and 106+115+119=340, thus the sum of the encoded numbers of the two words are equal. In fact, there are in all 903 such words of length 3 in an encoding system of alphabet size 128 (in this example, ASCII). The problem is as follows: given an encoding system of alphabet size n where each character is encoded as a number between 0 and n1 inclusive, how many different words of length m are there, such that the sum of the encoded numbers of all characters is equal to k?

    Since the answer may be large, you only need to output it modulo 998244353.
     
    Input
    The first line of input is a single integer T (1T400), the number of test cases.

    Each test case includes a line of three integers n,m,k (1n,m105,0k105), denoting the size of the alphabet of the encoding system, the length of the word, and the required sum of the encoded numbers of all characters, respectively.

    It is guaranteed that the sum of n, the sum of m and the sum of k don't exceed 5×106, respectively.
     
    Output
    For each test case, display the answer modulo 998244353 in a single line.
     
    Sample Input
    4
    2 3 3
    2 3 4
    3 3 3
    128 3 340
     
    Sample Output
    1
    0
    7
    903
     
     
     
    排斥定理:sum( (-1)^c * C(m , c) * C(m-1+k-n*c , m-1) );
     1 #include <bits/stdc++.h>
     2 #define ll long long
     3 #define INF 0x3f3f3f3f
     4 using namespace std;
     5 const ll mod = 998244353;
     6 const int N = 2e5+10;
     7 ll fac[N], inv[N];
     8 ll pow_mod(ll x, ll n){  
     9     ll res=1;  
    10     while(n>0){  
    11         if(n&1)res=res*x%mod;  
    12         x=x*x%mod;  
    13         n>>=1;  
    14     }  
    15     return res;  
    16 }
    17 ll C(int a, int b) {
    18     if(a < 0 || b < 0 || a < b) return 0;
    19     return fac[a] * inv[b] % mod * inv[a-b] % mod;
    20 }
    21 int main() {
    22     int mx = N;
    23     fac[0] = 1;for(int i = 1; i <= mx; i ++) fac[i] = fac[i-1] * i %mod;
    24     inv[mx] = pow_mod(fac[mx], mod-2); for(int i = mx-1; i >= 0; i --) inv[i] = inv[i+1] *(i+1) % mod;
    25     int t, n, m, k;
    26     cin >> t;
    27     while(t--) {
    28         cin >> n >> m >> k;
    29         ll ans = 0;
    30         for(int i = 0; i*n <= k; i ++) {
    31             if(i&1) ans = (ans - C(m,i)*C(m-1+k-n*i, m-1)%mod+mod) % mod;
    32             else ans = (ans + C(m,i)*C(m-1+k-n*i, m-1)%mod+mod) % mod;
    33         }
    34         cout << ans%mod << endl;
    35     }
    36     return 0;
    37 }
     
  • 相关阅读:
    (转)Java并发包:AtomicBoolean和AtomicReference
    (转)maven怎么 引入(或引用/使用) 自定义(或本地/第三方) jar的三种方式 图文教程 方法二最简单
    servlet3.0 异步处理
    (转)Groovy简介
    (转)springboot应用启动原理(一) 将启动脚本嵌入jar
    (转)springboot应用启动原理(二) 扩展URLClassLoader实现嵌套jar加载
    (转)运行jar应用程序引用其他jar包的四种方法 -- ClassLoader应用
    (转)二层网络结构和三层网络结构的对比
    Java语法糖4:内部类
    Java语法糖3:泛型
  • 原文地址:https://www.cnblogs.com/xingkongyihao/p/9488148.html
Copyright © 2011-2022 走看看