zoukankan      html  css  js  c++  java
  • 信号处理——EMD、VMD的一点小思考

    作者:桂。

    时间:2017-03-06  20:57:22

    链接:http://www.cnblogs.com/xingshansi/p/6511916.html 


    前言

    本文为Hilbert变换一篇的内容补充,主要内容为:

      1)EMD原理介绍

      2)代码分析

      3)一种权衡的小trick

      4)问题补充

    内容主要为自己的学习总结,并多有借鉴他人,最后一并给出链接。

    一、EMD原理介绍

      A-EMD的意义

    很多人都知道EMD(Empirical Mode Decomposition)可以将信号分解不同频率特性,并且结合Hilbert求解包络以及瞬时频率。EMD、Hilbert、瞬时频率三者有无内在联系?答案是:有。

    按照Hilbert变换一篇的介绍,

    $f(t) = frac{{dPhi (t)}}{{d(t)}}$

    然而,这样求解瞬时频率在某些情况下有问题,可能出现$f(t)$为负的情况:我1秒手指动5下,频率是5Hz;反过来,频率为8Hz时,手指1秒动8下,可如果频率为-5Hz呢?负频率没有意义。

    考虑信号

    $x(t) = {x_1}(t) + {x_2}(t) = {A_1}{e^{j{omega _1}t}} + {A_2}{e^{j{omega _2}t}} = A(t){e^{jvarphi (t)}}$

    为了简单起见,假设$A_1$和$A_2$恒定,且$omega_1$和$omega_2$是正的。信号$x(t)$的频谱应由两个在$omega_1$和$omega_2$的$delta$函数组成,即

    $X(omega ) = {A_1}delta (omega  - {omega _1}) + {A_2}delta (omega  - {omega _2})$

    因为假设$omega_1$和$omega_2$是正的,所以该信号解析。求得相位

    $Phi (t) = frac{{{A_1}sin {omega _1}t + {A_{ m{2}}}sin {omega _{ m{2}}}t}}{{{A_1}cos {omega _1}t + {A_{ m{2}}}cos {omega _{ m{2}}}t}}$

    分别取两组参数,对$t$求导,得到对应参数下的瞬时频率:

    参数

    $omega_1 = 10Hz$和$omega_2 = 20Hz$.

    • 组1:{$A_1 = 0.2, A_2 = 1$};
    • 组2:{$A_1 = 1.2, A_2 = 1$}

    对于组2,瞬时频率出现了负值。

    可见

    对任意信号进行Hilbert变换,可能出现无法解释、缺乏实际意义的频率分量。Norden E. Hung等人对瞬时频率进行研究后发现,只有满足特定条件的信号,其瞬时频率才具有物理意义,并将此类信号成为:IMF/基本模式分量。 

      B-EMD基本原理

    此处给一个原理图:

      C-基本模式分量(IMF)

    EMD分解的IMF其瞬时频率具有实际物理意义,原因有两点:

    • 限定1
      • 在整个数据序列中,极值点的数量$N_e$(包括极大值、极小值点)与过零点的数量必须相等,或最多相差1个,即$(N_e-1) le N_e ge (N_e+1)$.
    • 限定2
      • 在任意时间点$t_i$上,信号局部极大值确定的上包络线$f_{max}(t)$和局部极小值确定的下包络线$f_{min}(t)$的均值为0.

    限定1即要求信号具有类似传统平稳高斯过程的分布;限定2要求局部均值为0,同时用局部最大、最小值的包络作为近似,从而信号局部对称,避免了不对称带来的瞬时频率波动。

      D-VMD

    关于VMD(Variational Mode Decomposition),具体原理可以参考其论文,这里我们只要记住一点:其分解的各个基本分量——即各解析信号的瞬时频率具有实际的物理意义

    二、代码分析

    首先给出信号分别用VMD、EMD的分解结果:

    给出对应的代码:

    %--------------- Preparation
    clear all;
    close all;
    clc;
    % Time Domain 0 to T
    T = 1000;
    fs = 1/T;
    t = (1:T)/T;
    freqs = 2*pi*(t-0.5-1/T)/(fs);
    % center frequencies of components
    f_1 = 2;
    f_2 = 24;
    f_3 = 288;
    % modes
    v_1 = (cos(2*pi*f_1*t));
    v_2 = 1/4*(cos(2*pi*f_2*t));
    v_3 = 1/16*(cos(2*pi*f_3*t));
    % for visualization purposes
    wsub{1} = 2*pi*f_1;
    wsub{2} = 2*pi*f_2;
    wsub{3} = 2*pi*f_3;
    % composite signal, including noise
    f = v_1 + v_2 + v_3 + 0.1*randn(size(v_1));
    % some sample parameters for VMD
    alpha = 2000;        % moderate bandwidth constraint
    tau = 0;            % noise-tolerance (no strict fidelity enforcement)
    K = 4;              % 4 modes
    DC = 0;             % no DC part imposed
    init = 1;           % initialize omegas uniformly
    tol = 1e-7;
    
    %--------------- Run actual VMD code
    [u, u_hat, omega] = VMD(f, alpha, tau, K, DC, init, tol);
    subplot(size(u,1)+1,2,1);
    plot(t,f,'k');grid on;
    title('VMD分解');
    subplot(size(u,1)+1,2,2);
    plot(freqs,abs(fft(f)),'k');grid on;
    title('对应频谱');
    for i = 2:size(u,1)+1
        subplot(size(u,1)+1,2,i*2-1);
        plot(t,u(i-1,:),'k');grid on;
        subplot(size(u,1)+1,2,i*2);
        plot(freqs,abs(fft(u(i-1,:))),'k');grid on;
    end
    
    %---------------run EMD code
    imf = emd(f);
    figure;
    subplot(size(imf,1)+1,2,1);
    plot(t,f,'k');grid on;
    title('EMD分解');
    subplot(size(imf,1)+1,2,2);
    plot(freqs,abs(fft(f)),'k');grid on;
    title('对应频谱');
    for i = 2:size(imf,1)+1
        subplot(size(imf,1)+1,2,i*2-1);
        plot(t,imf(i-1,:),'k');grid on;
        subplot(size(imf,1)+1,2,i*2);
        plot(freqs,abs(fft(imf(i-1,:))),'k');grid on;
    end
    

      附上两个子程序的code.

    VMD:

    function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol)
    % Variational Mode Decomposition
    % Authors: Konstantin Dragomiretskiy and Dominique Zosso
    % zosso@math.ucla.edu --- http://www.math.ucla.edu/~zosso
    % Initial release 2013-12-12 (c) 2013
    %
    % Input and Parameters:
    % ---------------------
    % signal  - the time domain signal (1D) to be decomposed
    % alpha   - the balancing parameter of the data-fidelity constraint
    % tau     - time-step of the dual ascent ( pick 0 for noise-slack )
    % K       - the number of modes to be recovered
    % DC      - true if the first mode is put and kept at DC (0-freq)
    % init    - 0 = all omegas start at 0
    %                    1 = all omegas start uniformly distributed
    %                    2 = all omegas initialized randomly
    % tol     - tolerance of convergence criterion; typically around 1e-6
    %
    % Output:
    % -------
    % u       - the collection of decomposed modes
    % u_hat   - spectra of the modes
    % omega   - estimated mode center-frequencies
    %
    % When using this code, please do cite our paper:
    % -----------------------------------------------
    % K. Dragomiretskiy, D. Zosso, Variational Mode Decomposition, IEEE Trans.
    % on Signal Processing (in press)
    % please check here for update reference: 
    %          http://dx.doi.org/10.1109/TSP.2013.2288675
    
    
    
    %---------- Preparations
    
    % Period and sampling frequency of input signal
    save_T = length(signal);
    fs = 1/save_T;
    
    % extend the signal by mirroring
    T = save_T;
    f_mirror(1:T/2) = signal(T/2:-1:1);
    f_mirror(T/2+1:3*T/2) = signal;
    f_mirror(3*T/2+1:2*T) = signal(T:-1:T/2+1);
    f = f_mirror;
    
    % Time Domain 0 to T (of mirrored signal)
    T = length(f);
    t = (1:T)/T;
    
    % Spectral Domain discretization
    freqs = t-0.5-1/T;
    
    % Maximum number of iterations (if not converged yet, then it won't anyway)
    N = 500;
    
    % For future generalizations: individual alpha for each mode
    Alpha = alpha*ones(1,K);
    
    % Construct and center f_hat
    f_hat = fftshift((fft(f)));
    f_hat_plus = f_hat;
    f_hat_plus(1:T/2) = 0;
    
    % matrix keeping track of every iterant // could be discarded for mem
    u_hat_plus = zeros(N, length(freqs), K);
    
    % Initialization of omega_k
    omega_plus = zeros(N, K);
    switch init
        case 1
            for i = 1:K
                omega_plus(1,i) = (0.5/K)*(i-1);
            end
        case 2
            omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K)));
        otherwise
            omega_plus(1,:) = 0;
    end
    
    % if DC mode imposed, set its omega to 0
    if DC
        omega_plus(1,1) = 0;
    end
    
    % start with empty dual variables
    lambda_hat = zeros(N, length(freqs));
    
    % other inits
    uDiff = tol+eps; % update step
    n = 1; % loop counter
    sum_uk = 0; % accumulator
    
    
    
    % ----------- Main loop for iterative updates
    
    
    
    
    while ( uDiff > tol &&  n < N ) % not converged and below iterations limit
        
        % update first mode accumulator
        k = 1;
        sum_uk = u_hat_plus(n,:,K) + sum_uk - u_hat_plus(n,:,1);
        
        % update spectrum of first mode through Wiener filter of residuals
        u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2);
        
        % update first omega if not held at 0
        if ~DC
            omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2);
        end
        
        % update of any other mode
        for k=2:K
            
            % accumulator
            sum_uk = u_hat_plus(n+1,:,k-1) + sum_uk - u_hat_plus(n,:,k);
            
            % mode spectrum
            u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2);
            
            % center frequencies
            omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2);
            
        end
        
        % Dual ascent
        lambda_hat(n+1,:) = lambda_hat(n,:) + tau*(sum(u_hat_plus(n+1,:,:),3) - f_hat_plus);
        
        % loop counter
        n = n+1;
        
        % converged yet?
        uDiff = eps;
        for i=1:K
            uDiff = uDiff + 1/T*(u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))*conj((u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i)))';
        end
        uDiff = abs(uDiff);
        
    end
    
    
    %------ Postprocessing and cleanup
    
    
    % discard empty space if converged early
    N = min(N,n);
    omega = omega_plus(1:N,:);
    
    % Signal reconstruction
    u_hat = zeros(T, K);
    u_hat((T/2+1):T,:) = squeeze(u_hat_plus(N,(T/2+1):T,:));
    u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_plus(N,(T/2+1):T,:)));
    u_hat(1,:) = conj(u_hat(end,:));
    
    u = zeros(K,length(t));
    
    for k = 1:K
        u(k,:)=real(ifft(ifftshift(u_hat(:,k))));
    end
    
    % remove mirror part
    u = u(:,T/4+1:3*T/4);
    
    % recompute spectrum
    clear u_hat;
    for k = 1:K
        u_hat(:,k)=fftshift(fft(u(k,:)))';
    end
    
    end

    EMD:

    %EMD  computes Empirical Mode Decomposition
    %
    %
    %   Syntax
    %
    %
    % IMF = EMD(X)
    % IMF = EMD(X,...,'Option_name',Option_value,...)
    % IMF = EMD(X,OPTS)
    % [IMF,ORT,NB_ITERATIONS] = EMD(...)
    %
    %
    %   Description
    %
    %
    % IMF = EMD(X) where X is a real vector computes the Empirical Mode
    % Decomposition [1] of X, resulting in a matrix IMF containing 1 IMF per row, the
    % last one being the residue. The default stopping criterion is the one proposed
    % in [2]:
    %
    %   at each point, mean_amplitude < THRESHOLD2*envelope_amplitude
    %   &
    %   mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE
    %   &
    %   |#zeros-#extrema|<=1
    %
    % where mean_amplitude = abs(envelope_max+envelope_min)/2
    % and envelope_amplitude = abs(envelope_max-envelope_min)/2
    % 
    % IMF = EMD(X) where X is a complex vector computes Bivariate Empirical Mode
    % Decomposition [3] of X, resulting in a matrix IMF containing 1 IMF per row, the
    % last one being the residue. The default stopping criterion is similar to the
    % one proposed in [2]:
    %
    %   at each point, mean_amplitude < THRESHOLD2*envelope_amplitude
    %   &
    %   mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE
    %
    % where mean_amplitude and envelope_amplitude have definitions similar to the
    % real case
    %
    % IMF = EMD(X,...,'Option_name',Option_value,...) sets options Option_name to
    % the specified Option_value (see Options)
    %
    % IMF = EMD(X,OPTS) is equivalent to the above syntax provided OPTS is a struct 
    % object with field names corresponding to option names and field values being the 
    % associated values 
    %
    % [IMF,ORT,NB_ITERATIONS] = EMD(...) returns an index of orthogonality
    %                       ________
    %         _  |IMF(i,:).*IMF(j,:)|
    %   ORT =  _____________________
    %         /
    %         ?       || X ||?%        i~=j
    %
    % and the number of iterations to extract each mode in NB_ITERATIONS
    %
    %
    %   Options
    %
    %
    %  stopping criterion options:
    %
    % STOP: vector of stopping parameters [THRESHOLD,THRESHOLD2,TOLERANCE]
    % if the input vector's length is less than 3, only the first parameters are
    % set, the remaining ones taking default values.
    % default: [0.05,0.5,0.05]
    %
    % FIX (int): disable the default stopping criterion and do exactly <FIX> 
    % number of sifting iterations for each mode
    %
    % FIX_H (int): disable the default stopping criterion and do <FIX_H> sifting 
    % iterations with |#zeros-#extrema|<=1 to stop [4]
    %
    %  bivariate/complex EMD options:
    %
    % COMPLEX_VERSION: selects the algorithm used for complex EMD ([3])
    % COMPLEX_VERSION = 1: "algorithm 1"
    % COMPLEX_VERSION = 2: "algorithm 2" (default)
    % 
    % NDIRS: number of directions in which envelopes are computed (default 4)
    % rem: the actual number of directions (according to [3]) is 2*NDIRS
    % 
    %  other options:
    %
    % T: sampling times (line vector) (default: 1:length(x))
    %
    % MAXITERATIONS: maximum number of sifting iterations for the computation of each
    % mode (default: 2000)
    %
    % MAXMODES: maximum number of imfs extracted (default: Inf)
    %
    % DISPLAY: if equals to 1 shows sifting steps with pause
    % if equals to 2 shows sifting steps without pause (movie style)
    % rem: display is disabled when the input is complex
    %
    % INTERP: interpolation scheme: 'linear', 'cubic', 'pchip' or 'spline' (default)
    % see interp1 documentation for details
    %
    % MASK: masking signal used to improve the decomposition according to [5]
    %
    %
    %   Examples
    %
    %
    %X = rand(1,512);
    %
    %IMF = emd(X);
    %
    %IMF = emd(X,'STOP',[0.1,0.5,0.05],'MAXITERATIONS',100);
    %
    %T=linspace(0,20,1e3);
    %X = 2*exp(i*T)+exp(3*i*T)+.5*T;
    %IMF = emd(X,'T',T);
    %
    %OPTIONS.DISLPAY = 1;
    %OPTIONS.FIX = 10;
    %OPTIONS.MAXMODES = 3;
    %[IMF,ORT,NBITS] = emd(X,OPTIONS);
    %
    %
    %   References
    %
    %
    % [1] N. E. Huang et al., "The empirical mode decomposition and the
    % Hilbert spectrum for non-linear and non stationary time series analysis",
    % Proc. Royal Soc. London A, Vol. 454, pp. 903-995, 1998
    %
    % [2] G. Rilling, P. Flandrin and P. Gon鏰lves
    % "On Empirical Mode Decomposition and its algorithms",
    % IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing
    % NSIP-03, Grado (I), June 2003
    %
    % [3] G. Rilling, P. Flandrin, P. Gon鏰lves and J. M. Lilly.,
    % "Bivariate Empirical Mode Decomposition",
    % Signal Processing Letters (submitted)
    %
    % [4] N. E. Huang et al., "A confidence limit for the Empirical Mode
    % Decomposition and Hilbert spectral analysis",
    % Proc. Royal Soc. London A, Vol. 459, pp. 2317-2345, 2003
    %
    % [5] R. Deering and J. F. Kaiser, "The use of a masking signal to improve 
    % empirical mode decomposition", ICASSP 2005
    %
    %
    % See also
    %  emd_visu (visualization),
    %  emdc, emdc_fix (fast implementations of EMD),
    %  cemdc, cemdc_fix, cemdc2, cemdc2_fix (fast implementations of bivariate EMD),
    %  hhspectrum (Hilbert-Huang spectrum)
    %
    %
    % G. Rilling, last modification: 3.2007
    % gabriel.rilling@ens-lyon.fr
    
    
    function [imf,ort,nbits] = emd(varargin)
    
    [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin{:});
    
    if display_sifting
      fig_h = figure;
    end
    
    
    %main loop : requires at least 3 extrema to proceed
    while ~stop_EMD(r,MODE_COMPLEX,ndirs) && (k < MAXMODES+1 || MAXMODES == 0) && ~any(mask)
    
      % current mode
      m = r;
    
      % mode at previous iteration
      mp = m;
    
      %computation of mean and stopping criterion
      if FIXE
        [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
      elseif FIXE_H
        stop_count = 0;
        [stop_sift,moyenne] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
      else
        [stop_sift,moyenne] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
      end
    
      % in case the current mode is so small that machine precision can cause
      % spurious extrema to appear
      if (max(abs(m))) < (1e-10)*(max(abs(x)))
        if ~stop_sift
          warning('emd:warning','forced stop of EMD : too small amplitude')
        else
          disp('forced stop of EMD : too small amplitude')
        end
        break
      end
    
    
      % sifting loop
      while ~stop_sift && nbit<MAXITERATIONS
    
        if(~MODE_COMPLEX && nbit>MAXITERATIONS/5 && mod(nbit,floor(MAXITERATIONS/10))==0 && ~FIXE && nbit > 100)
          disp(['mode ',int2str(k),', iteration ',int2str(nbit)])
          if exist('s','var')
            disp(['stop parameter mean value : ',num2str(s)])
          end
          [im,iM] = extr(m);
          disp([int2str(sum(m(im) > 0)),' minima > 0; ',int2str(sum(m(iM) < 0)),' maxima < 0.'])
        end
    
        %sifting
        m = m - moyenne;
    
        %computation of mean and stopping criterion
        if FIXE
          [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
        elseif FIXE_H
          [stop_sift,moyenne,stop_count] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
        else
          [stop_sift,moyenne,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
        end
    
        % display
        if display_sifting && ~MODE_COMPLEX
          NBSYM = 2;
          [indmin,indmax] = extr(mp);
          [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,mp,mp,NBSYM);
          envminp = interp1(tmin,mmin,t,INTERP);
          envmaxp = interp1(tmax,mmax,t,INTERP);
          envmoyp = (envminp+envmaxp)/2;
          if FIXE || FIXE_H
            display_emd_fixe(t,m,mp,r,envminp,envmaxp,envmoyp,nbit,k,display_sifting)
          else
            sxp=2*(abs(envmoyp))./(abs(envmaxp-envminp));
            sp = mean(sxp);
            display_emd(t,m,mp,r,envminp,envmaxp,envmoyp,s,sp,sxp,sdt,sd2t,nbit,k,display_sifting,stop_sift)
          end
        end
    
        mp = m;
        nbit=nbit+1;
        NbIt=NbIt+1;
    
        if(nbit==(MAXITERATIONS-1) && ~FIXE && nbit > 100)
          if exist('s','var')
            warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'. stop parameter mean value : ',num2str(s)])
          else
            warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'.'])
          end
        end
    
      end % sifting loop
      imf(k,:) = m;
      if display_sifting
        disp(['mode ',int2str(k),' stored'])
      end
      nbits(k) = nbit;
      k = k+1;
    
    
      r = r - m;
      nbit=0;
    
    
    end %main loop
    
    if any(r) && ~any(mask)
      imf(k,:) = r;
    end
    
    ort = io(x,imf);
    
    if display_sifting
      close
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    % tests if there are enough (3) extrema to continue the decomposition
    function stop = stop_EMD(r,MODE_COMPLEX,ndirs)
    if MODE_COMPLEX
      for k = 1:ndirs
        phi = (k-1)*pi/ndirs;
        [indmin,indmax] = extr(real(exp(i*phi)*r));
        ner(k) = length(indmin) + length(indmax);
      end
      stop = any(ner < 3);
    else
      [indmin,indmax] = extr(r);
      ner = length(indmin) + length(indmax);
      stop = ner < 3;
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    % computes the mean of the envelopes and the mode amplitude estimate
    function [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs)
    NBSYM = 2;
    if MODE_COMPLEX
      switch MODE_COMPLEX
        case 1
          for k = 1:ndirs
            phi = (k-1)*pi/ndirs;
            y = real(exp(-i*phi)*m);
            [indmin,indmax,indzer] = extr(y);
            nem(k) = length(indmin)+length(indmax);
            nzm(k) = length(indzer);
            [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,m,NBSYM);
            envmin(k,:) = interp1(tmin,zmin,t,INTERP);
            envmax(k,:) = interp1(tmax,zmax,t,INTERP);
          end
          envmoy = mean((envmin+envmax)/2,1);
          if nargout > 3
            amp = mean(abs(envmax-envmin),1)/2;
          end
        case 2
          for k = 1:ndirs
            phi = (k-1)*pi/ndirs;
            y = real(exp(-i*phi)*m);
            [indmin,indmax,indzer] = extr(y);
            nem(k) = length(indmin)+length(indmax);
            nzm(k) = length(indzer);
            [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,y,NBSYM);
            envmin(k,:) = exp(i*phi)*interp1(tmin,zmin,t,INTERP);
            envmax(k,:) = exp(i*phi)*interp1(tmax,zmax,t,INTERP);
          end
          envmoy = mean((envmin+envmax),1);
          if nargout > 3
            amp = mean(abs(envmax-envmin),1)/2;
          end
      end
    else
      [indmin,indmax,indzer] = extr(m);
      nem = length(indmin)+length(indmax);
      nzm = length(indzer);
      [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,m,m,NBSYM);
      envmin = interp1(tmin,mmin,t,INTERP);
      envmax = interp1(tmax,mmax,t,INTERP);
      envmoy = (envmin+envmax)/2;
      if nargout > 3
        amp = mean(abs(envmax-envmin),1)/2;
      end
    end
    end
    
    %-------------------------------------------------------------------------------
    % default stopping criterion
    function [stop,envmoy,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs)
    try
      [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
      sx = abs(envmoy)./amp;
      s = mean(sx);
      stop = ~((mean(sx > sd) > tol | any(sx > sd2)) & (all(nem > 2)));
      if ~MODE_COMPLEX
        stop = stop && ~(abs(nzm-nem)>1);
      end
    catch
      stop = 1;
      envmoy = zeros(1,length(m));
      s = NaN;
    end
    end
    
    %-------------------------------------------------------------------------------
    % stopping criterion corresponding to option FIX
    function [stop,moyenne]= stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs)
    try
      moyenne = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
      stop = 0;
    catch
      moyenne = zeros(1,length(m));
      stop = 1;
    end
    end
    
    %-------------------------------------------------------------------------------
    % stopping criterion corresponding to option FIX_H
    function [stop,moyenne,stop_count]= stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs)
    try
      [moyenne,nem,nzm] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
      if (all(abs(nzm-nem)>1))
        stop = 0;
        stop_count = 0;
      else
        stop_count = stop_count+1;
        stop = (stop_count == FIXE_H);
      end
    catch
      moyenne = zeros(1,length(m));
      stop = 1;
    end
    end
    
    %-------------------------------------------------------------------------------
    % displays the progression of the decomposition with the default stopping criterion
    function display_emd(t,m,mp,r,envmin,envmax,envmoy,s,sb,sx,sdt,sd2t,nbit,k,display_sifting,stop_sift)
    subplot(4,1,1)
    plot(t,mp);hold on;
    plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);
    set(gca,'XTick',[])
    hold  off
    subplot(4,1,2)
    plot(t,sx)
    hold on
    plot(t,sdt,'--r')
    plot(t,sd2t,':k')
    title('stop parameter')
    set(gca,'XTick',[])
    hold off
    subplot(4,1,3)
    plot(t,m)
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);
    set(gca,'XTick',[])
    subplot(4,1,4);
    plot(t,r-m)
    title('residue');
    disp(['stop parameter mean value : ',num2str(sb),' before sifting and ',num2str(s),' after'])
    if stop_sift
      disp('last iteration for this mode')
    end
    if display_sifting == 2
      pause(0.01)
    else
      pause
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    % displays the progression of the decomposition with the FIX and FIX_H stopping criteria
    function display_emd_fixe(t,m,mp,r,envmin,envmax,envmoy,nbit,k,display_sifting)
    subplot(3,1,1)
    plot(t,mp);hold on;
    plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);
    set(gca,'XTick',[])
    hold  off
    subplot(3,1,2)
    plot(t,m)
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);
    set(gca,'XTick',[])
    subplot(3,1,3);
    plot(t,r-m)
    title('residue');
    if display_sifting == 2
      pause(0.01)
    else
      pause
    end
    end
    
    %---------------------------------------------------------------------------------------
    % defines new extrema points to extend the interpolations at the edges of the
    % signal (mainly mirror symmetry)
    function [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,x,z,nbsym)
    	
    	lx = length(x);
    	
    	if (length(indmin) + length(indmax) < 3)
    		error('not enough extrema')
    	end
    
        % boundary conditions for interpolations :
    
    	if indmax(1) < indmin(1)
        	if x(1) > x(indmin(1))
    			lmax = fliplr(indmax(2:min(end,nbsym+1)));
    			lmin = fliplr(indmin(1:min(end,nbsym)));
    			lsym = indmax(1);
    		else
    			lmax = fliplr(indmax(1:min(end,nbsym)));
    			lmin = [fliplr(indmin(1:min(end,nbsym-1))),1];
    			lsym = 1;
    		end
    	else
    
    		if x(1) < x(indmax(1))
    			lmax = fliplr(indmax(1:min(end,nbsym)));
    			lmin = fliplr(indmin(2:min(end,nbsym+1)));
    			lsym = indmin(1);
    		else
    			lmax = [fliplr(indmax(1:min(end,nbsym-1))),1];
    			lmin = fliplr(indmin(1:min(end,nbsym)));
    			lsym = 1;
    		end
    	end
        
    	if indmax(end) < indmin(end)
    		if x(end) < x(indmax(end))
    			rmax = fliplr(indmax(max(end-nbsym+1,1):end));
    			rmin = fliplr(indmin(max(end-nbsym,1):end-1));
    			rsym = indmin(end);
    		else
    			rmax = [lx,fliplr(indmax(max(end-nbsym+2,1):end))];
    			rmin = fliplr(indmin(max(end-nbsym+1,1):end));
    			rsym = lx;
    		end
    	else
    		if x(end) > x(indmin(end))
    			rmax = fliplr(indmax(max(end-nbsym,1):end-1));
    			rmin = fliplr(indmin(max(end-nbsym+1,1):end));
    			rsym = indmax(end);
    		else
    			rmax = fliplr(indmax(max(end-nbsym+1,1):end));
    			rmin = [lx,fliplr(indmin(max(end-nbsym+2,1):end))];
    			rsym = lx;
    		end
    	end
        
    	tlmin = 2*t(lsym)-t(lmin);
    	tlmax = 2*t(lsym)-t(lmax);
    	trmin = 2*t(rsym)-t(rmin);
    	trmax = 2*t(rsym)-t(rmax);
        
    	% in case symmetrized parts do not extend enough
    	if tlmin(1) > t(1) || tlmax(1) > t(1)
    		if lsym == indmax(1)
    			lmax = fliplr(indmax(1:min(end,nbsym)));
    		else
    			lmin = fliplr(indmin(1:min(end,nbsym)));
    		end
    		if lsym == 1
    			error('bug')
    		end
    		lsym = 1;
    		tlmin = 2*t(lsym)-t(lmin);
    		tlmax = 2*t(lsym)-t(lmax);
    	end   
        
    	if trmin(end) < t(lx) || trmax(end) < t(lx)
    		if rsym == indmax(end)
    			rmax = fliplr(indmax(max(end-nbsym+1,1):end));
    		else
    			rmin = fliplr(indmin(max(end-nbsym+1,1):end));
    		end
    	if rsym == lx
    		error('bug')
    	end
    		rsym = lx;
    		trmin = 2*t(rsym)-t(rmin);
    		trmax = 2*t(rsym)-t(rmax);
    	end 
              
    	zlmax =z(lmax); 
    	zlmin =z(lmin);
    	zrmax =z(rmax); 
    	zrmin =z(rmin);
         
    	tmin = [tlmin t(indmin) trmin];
    	tmax = [tlmax t(indmax) trmax];
    	zmin = [zlmin z(indmin) zrmin];
    	zmax = [zlmax z(indmax) zrmax];
    end
        
    %---------------------------------------------------------------------------------------------------
    %extracts the indices of extrema
    function [indmin, indmax, indzer] = extr(x,t)
    
    if(nargin==1)
      t=1:length(x);
    end
    
    m = length(x);
    
    if nargout > 2
      x1=x(1:m-1);
      x2=x(2:m);
      indzer = find(x1.*x2<0);
    
      if any(x == 0)
        iz = find( x==0 );
        indz = [];
        if any(diff(iz)==1)
          zer = x == 0;
          dz = diff([0 zer 0]);
          debz = find(dz == 1);
          finz = find(dz == -1)-1;
          indz = round((debz+finz)/2);
        else
          indz = iz;
        end
        indzer = sort([indzer indz]);
      end
    end
    
    d = diff(x);
    
    n = length(d);
    d1 = d(1:n-1);
    d2 = d(2:n);
    indmin = find(d1.*d2<0 & d1<0)+1;
    indmax = find(d1.*d2<0 & d1>0)+1;
    
    
    % when two or more successive points have the same value we consider only one extremum in the middle of the constant area
    % (only works if the signal is uniformly sampled)
    
    if any(d==0)
    
      imax = [];
      imin = [];
    
      bad = (d==0);
      dd = diff([0 bad 0]);
      debs = find(dd == 1);
      fins = find(dd == -1);
      if debs(1) == 1
        if length(debs) > 1
          debs = debs(2:end);
          fins = fins(2:end);
        else
          debs = [];
          fins = [];
        end
      end
      if length(debs) > 0
        if fins(end) == m
          if length(debs) > 1
            debs = debs(1:(end-1));
            fins = fins(1:(end-1));
    
          else
            debs = [];
            fins = [];
          end
        end
      end
      lc = length(debs);
      if lc > 0
        for k = 1:lc
          if d(debs(k)-1) > 0
            if d(fins(k)) < 0
              imax = [imax round((fins(k)+debs(k))/2)];
            end
          else
            if d(fins(k)) > 0
              imin = [imin round((fins(k)+debs(k))/2)];
            end
          end
        end
      end
    
      if length(imax) > 0
        indmax = sort([indmax imax]);
      end
    
      if length(imin) > 0
        indmin = sort([indmin imin]);
      end
    
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    
    function ort = io(x,imf)
    % ort = IO(x,imf) computes the index of orthogonality
    %
    % inputs : - x    : analyzed signal
    %          - imf  : empirical mode decomposition
    
    n = size(imf,1);
    
    s = 0;
    
    for i = 1:n
      for j =1:n
        if i~=j
          s = s + abs(sum(imf(i,:).*conj(imf(j,:)))/sum(x.^2));
        end
      end
    end
    
    ort = 0.5*s;
    end
    %---------------------------------------------------------------------------------------------------
    
    function [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin)
    
    x = varargin{1};
    if nargin == 2
      if isstruct(varargin{2})
        inopts = varargin{2};
      else
        error('when using 2 arguments the first one is the analyzed signal X and the second one is a struct object describing the options')
      end
    elseif nargin > 2
      try
        inopts = struct(varargin{2:end});
      catch
        error('bad argument syntax')
      end
    end
    
    % default for stopping
    defstop = [0.05,0.5,0.05];
    
    opt_fields = {'t','stop','display','maxiterations','fix','maxmodes','interp','fix_h','mask','ndirs','complex_version'};
    
    defopts.stop = defstop;
    defopts.display = 0;
    defopts.t = 1:max(size(x));
    defopts.maxiterations = 2000;
    defopts.fix = 0;
    defopts.maxmodes = 0;
    defopts.interp = 'spline';
    defopts.fix_h = 0;
    defopts.mask = 0;
    defopts.ndirs = 4;
    defopts.complex_version = 2;
    
    opts = defopts;
    
    
    
    if(nargin==1)
      inopts = defopts;
    elseif nargin == 0
      error('not enough arguments')
    end
    
    
    names = fieldnames(inopts);
    for nom = names'
      if ~any(strcmpi(char(nom), opt_fields))
        error(['bad option field name: ',char(nom)])
      end
      if ~isempty(eval(['inopts.',char(nom)])) % empty values are discarded
        eval(['opts.',lower(char(nom)),' = inopts.',char(nom),';'])
      end
    end
    
    t = opts.t;
    stop = opts.stop;
    display_sifting = opts.display;
    MAXITERATIONS = opts.maxiterations;
    FIXE = opts.fix;
    MAXMODES = opts.maxmodes;
    INTERP = opts.interp;
    FIXE_H = opts.fix_h;
    mask = opts.mask;
    ndirs = opts.ndirs;
    complex_version = opts.complex_version;
    
    if ~isvector(x)
      error('X must have only one row or one column')
    end
    
    if size(x,1) > 1
      x = x.';
    end
    
    if ~isvector(t)
      error('option field T must have only one row or one column')
    end
    
    if ~isreal(t)
      error('time instants T must be a real vector')
    end
    
    if size(t,1) > 1
      t = t';
    end
    
    if (length(t)~=length(x))
      error('X and option field T must have the same length')
    end
    
    if ~isvector(stop) || length(stop) > 3
      error('option field STOP must have only one row or one column of max three elements')
    end
    
    if ~all(isfinite(x))
      error('data elements must be finite')
    end
    
    if size(stop,1) > 1
      stop = stop';
    end
    
    L = length(stop);
    if L < 3
      stop(3)=defstop(3);
    end
    
    if L < 2
      stop(2)=defstop(2);
    end
    
    
    if ~ischar(INTERP) || ~any(strcmpi(INTERP,{'linear','cubic','spline'}))
      error('INTERP field must be ''linear'', ''cubic'', ''pchip'' or ''spline''')
    end
    
    %special procedure when a masking signal is specified
    if any(mask)
      if ~isvector(mask) || length(mask) ~= length(x)
        error('masking signal must have the same dimension as the analyzed signal X')
      end
    
      if size(mask,1) > 1
        mask = mask.';
      end
      opts.mask = 0;
      imf1 = emd(x+mask,opts);
      imf2 = emd(x-mask,opts);
      if size(imf1,1) ~= size(imf2,1)
        warning('emd:warning',['the two sets of IMFs have different sizes: ',int2str(size(imf1,1)),' and ',int2str(size(imf2,1)),' IMFs.'])
      end
      S1 = size(imf1,1);
      S2 = size(imf2,1);
      if S1 ~= S2
        if S1 < S2
          tmp = imf1;
          imf1 = imf2;
          imf2 = tmp;
        end
        imf2(max(S1,S2),1) = 0;
      end
      imf = (imf1+imf2)/2;
    
    end
    
    
    sd = stop(1);
    sd2 = stop(2);
    tol = stop(3);
    
    lx = length(x);
    
    sdt = sd*ones(1,lx);
    sd2t = sd2*ones(1,lx);
    
    if FIXE
      MAXITERATIONS = FIXE;
      if FIXE_H
        error('cannot use both ''FIX'' and ''FIX_H'' modes')
      end
    end
    
    MODE_COMPLEX = ~isreal(x)*complex_version;
    if MODE_COMPLEX && complex_version ~= 1 && complex_version ~= 2
      error('COMPLEX_VERSION parameter must equal 1 or 2')
    end
    
    
    % number of extrema and zero-crossings in residual
    ner = lx;
    nzr = lx;
    
    r = x;
    
    if ~any(mask) % if a masking signal is specified "imf" already exists at this stage
      imf = [];
    end
    k = 1;
    
    % iterations counter for extraction of 1 mode
    nbit=0;
    
    % total iterations counter
    NbIt=0;
    end
    %---------------------------------------------------------------------------------------------------

    关于EMD,有对应的工具箱。VMD也有扩展的二维分解,此处不再展开。

    三、一种权衡的小trick

    关于瞬时频率的原理以及代码,参考另一篇博文

    比较来看:

    • EMD分解的IMF分量个数不能人为设定,而VMD(Variational Mode Decomposition)则可以;
    • 但VMD也有弊端:分解过多,则信号断断续续,没有多少规律可言。

    能不能取长补短呢?

    自己之前做了一个小code,放在这里,供大家交流使用(此理论为自己首创,版权所有,拿去也不介意!(●'◡'●))。
    给定一个信号,下图是EMD分解结果,分解出了5个分量。

    再来一个VMD(设定分量个数为3)的分解结果:

    比较两个结果,可以发现:VMD的低频分量,更容易表达出经济波动的大趋势,而EMD则不易观察该特性。
    或许有人会说:几个EMD分量叠加一下,也会有该效果,但如果不观察分解的数据,如何确定几个分量相加呢?更何况EMD总的IMF个数也是未知!

    VMD的优势观察到了,但如何确定分量个数呢?
    再来一个效果图:

    这里分析了VMD分量从1~9,9种情况下某特征的曲线,可以观察到:个数增加到一定数量,曲线有了明显的下弯曲现象(该特性容易借助曲率,进行量化分析,不再展开),这个临界的个数就是分解的合适数量,此处:K=3,因为到4就有了明显的下弯曲。

    可见通过该特征,即可理论上得出最优K。下面讲一讲这个某特征为何物?
    上一段代码:

    for st=1:9
        K=st+1; 
        [u, u_hat, omega] = VMD(data, length(data), 0, K, 0, 1, 1e-5);
        u=flipud(u);
        resf=zeros(1,K);
        for i=1:K
            testdata=u(i,:);
            hilbert(testdata');  
            z=hilbert(testdata');                   % 希尔伯特变换
            a=abs(z);                               % 包络线
            fnor=instfreq(z);                       % 瞬时频率
            resf(i)=mean(fnor);      
        end
        subplot(3,3,st)
        plot(resf,'k');title(['个数为',num2str(st)]);grid on;
    end
    

      没错,该特征就是:分量瞬时频率的均值。如果分解个数过大,则分量会出现断断絮絮地现象,特别是在高频,这样一来,即使是高频,平均瞬时频率反而低一些,这也是下弯曲的根本原因。

    这个小trick就介绍到这里。

    四、问题补充

    HHT算法中,有两处存在端点效应,VMD是否也有呢?这一点没有再去验证。另外,关于Hilbert的端点效应,在另一篇博文已经给出。

    参考:

    宋知用:《MATLAB在语音信号分析和合成中的应用》

    了凡春秋: http://blog.sina.com.cn/s/blog_6163bdeb0102e2cd.html

    VMD-code:https://cn.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition

    EMD原理图:http://blog.sciencenet.cn/blog-244606-256958.html

  • 相关阅读:
    ubuntu下文件安装与卸载
    webkit中的JavaScriptCore部分
    ubuntu 显示文件夹中的隐藏文件
    C语言中的fscanf函数
    test
    Use SandCastle to generate help document automatically.
    XElement Getting OuterXML and InnerXML
    XUACompatible meta 用法
    Adobe Dreamweaver CS5.5 中文版 下载 注册码
    The Difference Between jQuery’s .bind(), .live(), and .delegate()
  • 原文地址:https://www.cnblogs.com/xingshansi/p/6511916.html
Copyright © 2011-2022 走看看