zoukankan      html  css  js  c++  java
  • 信号处理——EMD、VMD的一点小思考

    作者:桂。

    时间:2017-03-06  20:57:22

    链接:http://www.cnblogs.com/xingshansi/p/6511916.html 


    前言

    本文为Hilbert变换一篇的内容补充,主要内容为:

      1)EMD原理介绍

      2)代码分析

      3)一种权衡的小trick

      4)问题补充

    内容主要为自己的学习总结,并多有借鉴他人,最后一并给出链接。

    一、EMD原理介绍

      A-EMD的意义

    很多人都知道EMD(Empirical Mode Decomposition)可以将信号分解不同频率特性,并且结合Hilbert求解包络以及瞬时频率。EMD、Hilbert、瞬时频率三者有无内在联系?答案是:有。

    按照Hilbert变换一篇的介绍,

    $f(t) = frac{{dPhi (t)}}{{d(t)}}$

    然而,这样求解瞬时频率在某些情况下有问题,可能出现$f(t)$为负的情况:我1秒手指动5下,频率是5Hz;反过来,频率为8Hz时,手指1秒动8下,可如果频率为-5Hz呢?负频率没有意义。

    考虑信号

    $x(t) = {x_1}(t) + {x_2}(t) = {A_1}{e^{j{omega _1}t}} + {A_2}{e^{j{omega _2}t}} = A(t){e^{jvarphi (t)}}$

    为了简单起见,假设$A_1$和$A_2$恒定,且$omega_1$和$omega_2$是正的。信号$x(t)$的频谱应由两个在$omega_1$和$omega_2$的$delta$函数组成,即

    $X(omega ) = {A_1}delta (omega  - {omega _1}) + {A_2}delta (omega  - {omega _2})$

    因为假设$omega_1$和$omega_2$是正的,所以该信号解析。求得相位

    $Phi (t) = frac{{{A_1}sin {omega _1}t + {A_{ m{2}}}sin {omega _{ m{2}}}t}}{{{A_1}cos {omega _1}t + {A_{ m{2}}}cos {omega _{ m{2}}}t}}$

    分别取两组参数,对$t$求导,得到对应参数下的瞬时频率:

    参数

    $omega_1 = 10Hz$和$omega_2 = 20Hz$.

    • 组1:{$A_1 = 0.2, A_2 = 1$};
    • 组2:{$A_1 = 1.2, A_2 = 1$}

    对于组2,瞬时频率出现了负值。

    可见

    对任意信号进行Hilbert变换,可能出现无法解释、缺乏实际意义的频率分量。Norden E. Hung等人对瞬时频率进行研究后发现,只有满足特定条件的信号,其瞬时频率才具有物理意义,并将此类信号成为:IMF/基本模式分量。 

      B-EMD基本原理

    此处给一个原理图:

      C-基本模式分量(IMF)

    EMD分解的IMF其瞬时频率具有实际物理意义,原因有两点:

    • 限定1
      • 在整个数据序列中,极值点的数量$N_e$(包括极大值、极小值点)与过零点的数量必须相等,或最多相差1个,即$(N_e-1) le N_e ge (N_e+1)$.
    • 限定2
      • 在任意时间点$t_i$上,信号局部极大值确定的上包络线$f_{max}(t)$和局部极小值确定的下包络线$f_{min}(t)$的均值为0.

    限定1即要求信号具有类似传统平稳高斯过程的分布;限定2要求局部均值为0,同时用局部最大、最小值的包络作为近似,从而信号局部对称,避免了不对称带来的瞬时频率波动。

      D-VMD

    关于VMD(Variational Mode Decomposition),具体原理可以参考其论文,这里我们只要记住一点:其分解的各个基本分量——即各解析信号的瞬时频率具有实际的物理意义

    二、代码分析

    首先给出信号分别用VMD、EMD的分解结果:

    给出对应的代码:

    %--------------- Preparation
    clear all;
    close all;
    clc;
    % Time Domain 0 to T
    T = 1000;
    fs = 1/T;
    t = (1:T)/T;
    freqs = 2*pi*(t-0.5-1/T)/(fs);
    % center frequencies of components
    f_1 = 2;
    f_2 = 24;
    f_3 = 288;
    % modes
    v_1 = (cos(2*pi*f_1*t));
    v_2 = 1/4*(cos(2*pi*f_2*t));
    v_3 = 1/16*(cos(2*pi*f_3*t));
    % for visualization purposes
    wsub{1} = 2*pi*f_1;
    wsub{2} = 2*pi*f_2;
    wsub{3} = 2*pi*f_3;
    % composite signal, including noise
    f = v_1 + v_2 + v_3 + 0.1*randn(size(v_1));
    % some sample parameters for VMD
    alpha = 2000;        % moderate bandwidth constraint
    tau = 0;            % noise-tolerance (no strict fidelity enforcement)
    K = 4;              % 4 modes
    DC = 0;             % no DC part imposed
    init = 1;           % initialize omegas uniformly
    tol = 1e-7;
    
    %--------------- Run actual VMD code
    [u, u_hat, omega] = VMD(f, alpha, tau, K, DC, init, tol);
    subplot(size(u,1)+1,2,1);
    plot(t,f,'k');grid on;
    title('VMD分解');
    subplot(size(u,1)+1,2,2);
    plot(freqs,abs(fft(f)),'k');grid on;
    title('对应频谱');
    for i = 2:size(u,1)+1
        subplot(size(u,1)+1,2,i*2-1);
        plot(t,u(i-1,:),'k');grid on;
        subplot(size(u,1)+1,2,i*2);
        plot(freqs,abs(fft(u(i-1,:))),'k');grid on;
    end
    
    %---------------run EMD code
    imf = emd(f);
    figure;
    subplot(size(imf,1)+1,2,1);
    plot(t,f,'k');grid on;
    title('EMD分解');
    subplot(size(imf,1)+1,2,2);
    plot(freqs,abs(fft(f)),'k');grid on;
    title('对应频谱');
    for i = 2:size(imf,1)+1
        subplot(size(imf,1)+1,2,i*2-1);
        plot(t,imf(i-1,:),'k');grid on;
        subplot(size(imf,1)+1,2,i*2);
        plot(freqs,abs(fft(imf(i-1,:))),'k');grid on;
    end
    

      附上两个子程序的code.

    VMD:

    function [u, u_hat, omega] = VMD(signal, alpha, tau, K, DC, init, tol)
    % Variational Mode Decomposition
    % Authors: Konstantin Dragomiretskiy and Dominique Zosso
    % zosso@math.ucla.edu --- http://www.math.ucla.edu/~zosso
    % Initial release 2013-12-12 (c) 2013
    %
    % Input and Parameters:
    % ---------------------
    % signal  - the time domain signal (1D) to be decomposed
    % alpha   - the balancing parameter of the data-fidelity constraint
    % tau     - time-step of the dual ascent ( pick 0 for noise-slack )
    % K       - the number of modes to be recovered
    % DC      - true if the first mode is put and kept at DC (0-freq)
    % init    - 0 = all omegas start at 0
    %                    1 = all omegas start uniformly distributed
    %                    2 = all omegas initialized randomly
    % tol     - tolerance of convergence criterion; typically around 1e-6
    %
    % Output:
    % -------
    % u       - the collection of decomposed modes
    % u_hat   - spectra of the modes
    % omega   - estimated mode center-frequencies
    %
    % When using this code, please do cite our paper:
    % -----------------------------------------------
    % K. Dragomiretskiy, D. Zosso, Variational Mode Decomposition, IEEE Trans.
    % on Signal Processing (in press)
    % please check here for update reference: 
    %          http://dx.doi.org/10.1109/TSP.2013.2288675
    
    
    
    %---------- Preparations
    
    % Period and sampling frequency of input signal
    save_T = length(signal);
    fs = 1/save_T;
    
    % extend the signal by mirroring
    T = save_T;
    f_mirror(1:T/2) = signal(T/2:-1:1);
    f_mirror(T/2+1:3*T/2) = signal;
    f_mirror(3*T/2+1:2*T) = signal(T:-1:T/2+1);
    f = f_mirror;
    
    % Time Domain 0 to T (of mirrored signal)
    T = length(f);
    t = (1:T)/T;
    
    % Spectral Domain discretization
    freqs = t-0.5-1/T;
    
    % Maximum number of iterations (if not converged yet, then it won't anyway)
    N = 500;
    
    % For future generalizations: individual alpha for each mode
    Alpha = alpha*ones(1,K);
    
    % Construct and center f_hat
    f_hat = fftshift((fft(f)));
    f_hat_plus = f_hat;
    f_hat_plus(1:T/2) = 0;
    
    % matrix keeping track of every iterant // could be discarded for mem
    u_hat_plus = zeros(N, length(freqs), K);
    
    % Initialization of omega_k
    omega_plus = zeros(N, K);
    switch init
        case 1
            for i = 1:K
                omega_plus(1,i) = (0.5/K)*(i-1);
            end
        case 2
            omega_plus(1,:) = sort(exp(log(fs) + (log(0.5)-log(fs))*rand(1,K)));
        otherwise
            omega_plus(1,:) = 0;
    end
    
    % if DC mode imposed, set its omega to 0
    if DC
        omega_plus(1,1) = 0;
    end
    
    % start with empty dual variables
    lambda_hat = zeros(N, length(freqs));
    
    % other inits
    uDiff = tol+eps; % update step
    n = 1; % loop counter
    sum_uk = 0; % accumulator
    
    
    
    % ----------- Main loop for iterative updates
    
    
    
    
    while ( uDiff > tol &&  n < N ) % not converged and below iterations limit
        
        % update first mode accumulator
        k = 1;
        sum_uk = u_hat_plus(n,:,K) + sum_uk - u_hat_plus(n,:,1);
        
        % update spectrum of first mode through Wiener filter of residuals
        u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2);
        
        % update first omega if not held at 0
        if ~DC
            omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2);
        end
        
        % update of any other mode
        for k=2:K
            
            % accumulator
            sum_uk = u_hat_plus(n+1,:,k-1) + sum_uk - u_hat_plus(n,:,k);
            
            % mode spectrum
            u_hat_plus(n+1,:,k) = (f_hat_plus - sum_uk - lambda_hat(n,:)/2)./(1+Alpha(1,k)*(freqs - omega_plus(n,k)).^2);
            
            % center frequencies
            omega_plus(n+1,k) = (freqs(T/2+1:T)*(abs(u_hat_plus(n+1, T/2+1:T, k)).^2)')/sum(abs(u_hat_plus(n+1,T/2+1:T,k)).^2);
            
        end
        
        % Dual ascent
        lambda_hat(n+1,:) = lambda_hat(n,:) + tau*(sum(u_hat_plus(n+1,:,:),3) - f_hat_plus);
        
        % loop counter
        n = n+1;
        
        % converged yet?
        uDiff = eps;
        for i=1:K
            uDiff = uDiff + 1/T*(u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i))*conj((u_hat_plus(n,:,i)-u_hat_plus(n-1,:,i)))';
        end
        uDiff = abs(uDiff);
        
    end
    
    
    %------ Postprocessing and cleanup
    
    
    % discard empty space if converged early
    N = min(N,n);
    omega = omega_plus(1:N,:);
    
    % Signal reconstruction
    u_hat = zeros(T, K);
    u_hat((T/2+1):T,:) = squeeze(u_hat_plus(N,(T/2+1):T,:));
    u_hat((T/2+1):-1:2,:) = squeeze(conj(u_hat_plus(N,(T/2+1):T,:)));
    u_hat(1,:) = conj(u_hat(end,:));
    
    u = zeros(K,length(t));
    
    for k = 1:K
        u(k,:)=real(ifft(ifftshift(u_hat(:,k))));
    end
    
    % remove mirror part
    u = u(:,T/4+1:3*T/4);
    
    % recompute spectrum
    clear u_hat;
    for k = 1:K
        u_hat(:,k)=fftshift(fft(u(k,:)))';
    end
    
    end

    EMD:

    %EMD  computes Empirical Mode Decomposition
    %
    %
    %   Syntax
    %
    %
    % IMF = EMD(X)
    % IMF = EMD(X,...,'Option_name',Option_value,...)
    % IMF = EMD(X,OPTS)
    % [IMF,ORT,NB_ITERATIONS] = EMD(...)
    %
    %
    %   Description
    %
    %
    % IMF = EMD(X) where X is a real vector computes the Empirical Mode
    % Decomposition [1] of X, resulting in a matrix IMF containing 1 IMF per row, the
    % last one being the residue. The default stopping criterion is the one proposed
    % in [2]:
    %
    %   at each point, mean_amplitude < THRESHOLD2*envelope_amplitude
    %   &
    %   mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE
    %   &
    %   |#zeros-#extrema|<=1
    %
    % where mean_amplitude = abs(envelope_max+envelope_min)/2
    % and envelope_amplitude = abs(envelope_max-envelope_min)/2
    % 
    % IMF = EMD(X) where X is a complex vector computes Bivariate Empirical Mode
    % Decomposition [3] of X, resulting in a matrix IMF containing 1 IMF per row, the
    % last one being the residue. The default stopping criterion is similar to the
    % one proposed in [2]:
    %
    %   at each point, mean_amplitude < THRESHOLD2*envelope_amplitude
    %   &
    %   mean of boolean array {(mean_amplitude)/(envelope_amplitude) > THRESHOLD} < TOLERANCE
    %
    % where mean_amplitude and envelope_amplitude have definitions similar to the
    % real case
    %
    % IMF = EMD(X,...,'Option_name',Option_value,...) sets options Option_name to
    % the specified Option_value (see Options)
    %
    % IMF = EMD(X,OPTS) is equivalent to the above syntax provided OPTS is a struct 
    % object with field names corresponding to option names and field values being the 
    % associated values 
    %
    % [IMF,ORT,NB_ITERATIONS] = EMD(...) returns an index of orthogonality
    %                       ________
    %         _  |IMF(i,:).*IMF(j,:)|
    %   ORT =  _____________________
    %         /
    %         ?       || X ||?%        i~=j
    %
    % and the number of iterations to extract each mode in NB_ITERATIONS
    %
    %
    %   Options
    %
    %
    %  stopping criterion options:
    %
    % STOP: vector of stopping parameters [THRESHOLD,THRESHOLD2,TOLERANCE]
    % if the input vector's length is less than 3, only the first parameters are
    % set, the remaining ones taking default values.
    % default: [0.05,0.5,0.05]
    %
    % FIX (int): disable the default stopping criterion and do exactly <FIX> 
    % number of sifting iterations for each mode
    %
    % FIX_H (int): disable the default stopping criterion and do <FIX_H> sifting 
    % iterations with |#zeros-#extrema|<=1 to stop [4]
    %
    %  bivariate/complex EMD options:
    %
    % COMPLEX_VERSION: selects the algorithm used for complex EMD ([3])
    % COMPLEX_VERSION = 1: "algorithm 1"
    % COMPLEX_VERSION = 2: "algorithm 2" (default)
    % 
    % NDIRS: number of directions in which envelopes are computed (default 4)
    % rem: the actual number of directions (according to [3]) is 2*NDIRS
    % 
    %  other options:
    %
    % T: sampling times (line vector) (default: 1:length(x))
    %
    % MAXITERATIONS: maximum number of sifting iterations for the computation of each
    % mode (default: 2000)
    %
    % MAXMODES: maximum number of imfs extracted (default: Inf)
    %
    % DISPLAY: if equals to 1 shows sifting steps with pause
    % if equals to 2 shows sifting steps without pause (movie style)
    % rem: display is disabled when the input is complex
    %
    % INTERP: interpolation scheme: 'linear', 'cubic', 'pchip' or 'spline' (default)
    % see interp1 documentation for details
    %
    % MASK: masking signal used to improve the decomposition according to [5]
    %
    %
    %   Examples
    %
    %
    %X = rand(1,512);
    %
    %IMF = emd(X);
    %
    %IMF = emd(X,'STOP',[0.1,0.5,0.05],'MAXITERATIONS',100);
    %
    %T=linspace(0,20,1e3);
    %X = 2*exp(i*T)+exp(3*i*T)+.5*T;
    %IMF = emd(X,'T',T);
    %
    %OPTIONS.DISLPAY = 1;
    %OPTIONS.FIX = 10;
    %OPTIONS.MAXMODES = 3;
    %[IMF,ORT,NBITS] = emd(X,OPTIONS);
    %
    %
    %   References
    %
    %
    % [1] N. E. Huang et al., "The empirical mode decomposition and the
    % Hilbert spectrum for non-linear and non stationary time series analysis",
    % Proc. Royal Soc. London A, Vol. 454, pp. 903-995, 1998
    %
    % [2] G. Rilling, P. Flandrin and P. Gon鏰lves
    % "On Empirical Mode Decomposition and its algorithms",
    % IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing
    % NSIP-03, Grado (I), June 2003
    %
    % [3] G. Rilling, P. Flandrin, P. Gon鏰lves and J. M. Lilly.,
    % "Bivariate Empirical Mode Decomposition",
    % Signal Processing Letters (submitted)
    %
    % [4] N. E. Huang et al., "A confidence limit for the Empirical Mode
    % Decomposition and Hilbert spectral analysis",
    % Proc. Royal Soc. London A, Vol. 459, pp. 2317-2345, 2003
    %
    % [5] R. Deering and J. F. Kaiser, "The use of a masking signal to improve 
    % empirical mode decomposition", ICASSP 2005
    %
    %
    % See also
    %  emd_visu (visualization),
    %  emdc, emdc_fix (fast implementations of EMD),
    %  cemdc, cemdc_fix, cemdc2, cemdc2_fix (fast implementations of bivariate EMD),
    %  hhspectrum (Hilbert-Huang spectrum)
    %
    %
    % G. Rilling, last modification: 3.2007
    % gabriel.rilling@ens-lyon.fr
    
    
    function [imf,ort,nbits] = emd(varargin)
    
    [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin{:});
    
    if display_sifting
      fig_h = figure;
    end
    
    
    %main loop : requires at least 3 extrema to proceed
    while ~stop_EMD(r,MODE_COMPLEX,ndirs) && (k < MAXMODES+1 || MAXMODES == 0) && ~any(mask)
    
      % current mode
      m = r;
    
      % mode at previous iteration
      mp = m;
    
      %computation of mean and stopping criterion
      if FIXE
        [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
      elseif FIXE_H
        stop_count = 0;
        [stop_sift,moyenne] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
      else
        [stop_sift,moyenne] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
      end
    
      % in case the current mode is so small that machine precision can cause
      % spurious extrema to appear
      if (max(abs(m))) < (1e-10)*(max(abs(x)))
        if ~stop_sift
          warning('emd:warning','forced stop of EMD : too small amplitude')
        else
          disp('forced stop of EMD : too small amplitude')
        end
        break
      end
    
    
      % sifting loop
      while ~stop_sift && nbit<MAXITERATIONS
    
        if(~MODE_COMPLEX && nbit>MAXITERATIONS/5 && mod(nbit,floor(MAXITERATIONS/10))==0 && ~FIXE && nbit > 100)
          disp(['mode ',int2str(k),', iteration ',int2str(nbit)])
          if exist('s','var')
            disp(['stop parameter mean value : ',num2str(s)])
          end
          [im,iM] = extr(m);
          disp([int2str(sum(m(im) > 0)),' minima > 0; ',int2str(sum(m(iM) < 0)),' maxima < 0.'])
        end
    
        %sifting
        m = m - moyenne;
    
        %computation of mean and stopping criterion
        if FIXE
          [stop_sift,moyenne] = stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs);
        elseif FIXE_H
          [stop_sift,moyenne,stop_count] = stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs);
        else
          [stop_sift,moyenne,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs);
        end
    
        % display
        if display_sifting && ~MODE_COMPLEX
          NBSYM = 2;
          [indmin,indmax] = extr(mp);
          [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,mp,mp,NBSYM);
          envminp = interp1(tmin,mmin,t,INTERP);
          envmaxp = interp1(tmax,mmax,t,INTERP);
          envmoyp = (envminp+envmaxp)/2;
          if FIXE || FIXE_H
            display_emd_fixe(t,m,mp,r,envminp,envmaxp,envmoyp,nbit,k,display_sifting)
          else
            sxp=2*(abs(envmoyp))./(abs(envmaxp-envminp));
            sp = mean(sxp);
            display_emd(t,m,mp,r,envminp,envmaxp,envmoyp,s,sp,sxp,sdt,sd2t,nbit,k,display_sifting,stop_sift)
          end
        end
    
        mp = m;
        nbit=nbit+1;
        NbIt=NbIt+1;
    
        if(nbit==(MAXITERATIONS-1) && ~FIXE && nbit > 100)
          if exist('s','var')
            warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'. stop parameter mean value : ',num2str(s)])
          else
            warning('emd:warning',['forced stop of sifting : too many iterations... mode ',int2str(k),'.'])
          end
        end
    
      end % sifting loop
      imf(k,:) = m;
      if display_sifting
        disp(['mode ',int2str(k),' stored'])
      end
      nbits(k) = nbit;
      k = k+1;
    
    
      r = r - m;
      nbit=0;
    
    
    end %main loop
    
    if any(r) && ~any(mask)
      imf(k,:) = r;
    end
    
    ort = io(x,imf);
    
    if display_sifting
      close
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    % tests if there are enough (3) extrema to continue the decomposition
    function stop = stop_EMD(r,MODE_COMPLEX,ndirs)
    if MODE_COMPLEX
      for k = 1:ndirs
        phi = (k-1)*pi/ndirs;
        [indmin,indmax] = extr(real(exp(i*phi)*r));
        ner(k) = length(indmin) + length(indmax);
      end
      stop = any(ner < 3);
    else
      [indmin,indmax] = extr(r);
      ner = length(indmin) + length(indmax);
      stop = ner < 3;
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    % computes the mean of the envelopes and the mode amplitude estimate
    function [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs)
    NBSYM = 2;
    if MODE_COMPLEX
      switch MODE_COMPLEX
        case 1
          for k = 1:ndirs
            phi = (k-1)*pi/ndirs;
            y = real(exp(-i*phi)*m);
            [indmin,indmax,indzer] = extr(y);
            nem(k) = length(indmin)+length(indmax);
            nzm(k) = length(indzer);
            [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,m,NBSYM);
            envmin(k,:) = interp1(tmin,zmin,t,INTERP);
            envmax(k,:) = interp1(tmax,zmax,t,INTERP);
          end
          envmoy = mean((envmin+envmax)/2,1);
          if nargout > 3
            amp = mean(abs(envmax-envmin),1)/2;
          end
        case 2
          for k = 1:ndirs
            phi = (k-1)*pi/ndirs;
            y = real(exp(-i*phi)*m);
            [indmin,indmax,indzer] = extr(y);
            nem(k) = length(indmin)+length(indmax);
            nzm(k) = length(indzer);
            [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,y,y,NBSYM);
            envmin(k,:) = exp(i*phi)*interp1(tmin,zmin,t,INTERP);
            envmax(k,:) = exp(i*phi)*interp1(tmax,zmax,t,INTERP);
          end
          envmoy = mean((envmin+envmax),1);
          if nargout > 3
            amp = mean(abs(envmax-envmin),1)/2;
          end
      end
    else
      [indmin,indmax,indzer] = extr(m);
      nem = length(indmin)+length(indmax);
      nzm = length(indzer);
      [tmin,tmax,mmin,mmax] = boundary_conditions(indmin,indmax,t,m,m,NBSYM);
      envmin = interp1(tmin,mmin,t,INTERP);
      envmax = interp1(tmax,mmax,t,INTERP);
      envmoy = (envmin+envmax)/2;
      if nargout > 3
        amp = mean(abs(envmax-envmin),1)/2;
      end
    end
    end
    
    %-------------------------------------------------------------------------------
    % default stopping criterion
    function [stop,envmoy,s] = stop_sifting(m,t,sd,sd2,tol,INTERP,MODE_COMPLEX,ndirs)
    try
      [envmoy,nem,nzm,amp] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
      sx = abs(envmoy)./amp;
      s = mean(sx);
      stop = ~((mean(sx > sd) > tol | any(sx > sd2)) & (all(nem > 2)));
      if ~MODE_COMPLEX
        stop = stop && ~(abs(nzm-nem)>1);
      end
    catch
      stop = 1;
      envmoy = zeros(1,length(m));
      s = NaN;
    end
    end
    
    %-------------------------------------------------------------------------------
    % stopping criterion corresponding to option FIX
    function [stop,moyenne]= stop_sifting_fixe(t,m,INTERP,MODE_COMPLEX,ndirs)
    try
      moyenne = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
      stop = 0;
    catch
      moyenne = zeros(1,length(m));
      stop = 1;
    end
    end
    
    %-------------------------------------------------------------------------------
    % stopping criterion corresponding to option FIX_H
    function [stop,moyenne,stop_count]= stop_sifting_fixe_h(t,m,INTERP,stop_count,FIXE_H,MODE_COMPLEX,ndirs)
    try
      [moyenne,nem,nzm] = mean_and_amplitude(m,t,INTERP,MODE_COMPLEX,ndirs);
      if (all(abs(nzm-nem)>1))
        stop = 0;
        stop_count = 0;
      else
        stop_count = stop_count+1;
        stop = (stop_count == FIXE_H);
      end
    catch
      moyenne = zeros(1,length(m));
      stop = 1;
    end
    end
    
    %-------------------------------------------------------------------------------
    % displays the progression of the decomposition with the default stopping criterion
    function display_emd(t,m,mp,r,envmin,envmax,envmoy,s,sb,sx,sdt,sd2t,nbit,k,display_sifting,stop_sift)
    subplot(4,1,1)
    plot(t,mp);hold on;
    plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);
    set(gca,'XTick',[])
    hold  off
    subplot(4,1,2)
    plot(t,sx)
    hold on
    plot(t,sdt,'--r')
    plot(t,sd2t,':k')
    title('stop parameter')
    set(gca,'XTick',[])
    hold off
    subplot(4,1,3)
    plot(t,m)
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);
    set(gca,'XTick',[])
    subplot(4,1,4);
    plot(t,r-m)
    title('residue');
    disp(['stop parameter mean value : ',num2str(sb),' before sifting and ',num2str(s),' after'])
    if stop_sift
      disp('last iteration for this mode')
    end
    if display_sifting == 2
      pause(0.01)
    else
      pause
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    % displays the progression of the decomposition with the FIX and FIX_H stopping criteria
    function display_emd_fixe(t,m,mp,r,envmin,envmax,envmoy,nbit,k,display_sifting)
    subplot(3,1,1)
    plot(t,mp);hold on;
    plot(t,envmax,'--k');plot(t,envmin,'--k');plot(t,envmoy,'r');
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' before sifting']);
    set(gca,'XTick',[])
    hold  off
    subplot(3,1,2)
    plot(t,m)
    title(['IMF ',int2str(k),';   iteration ',int2str(nbit),' after sifting']);
    set(gca,'XTick',[])
    subplot(3,1,3);
    plot(t,r-m)
    title('residue');
    if display_sifting == 2
      pause(0.01)
    else
      pause
    end
    end
    
    %---------------------------------------------------------------------------------------
    % defines new extrema points to extend the interpolations at the edges of the
    % signal (mainly mirror symmetry)
    function [tmin,tmax,zmin,zmax] = boundary_conditions(indmin,indmax,t,x,z,nbsym)
    	
    	lx = length(x);
    	
    	if (length(indmin) + length(indmax) < 3)
    		error('not enough extrema')
    	end
    
        % boundary conditions for interpolations :
    
    	if indmax(1) < indmin(1)
        	if x(1) > x(indmin(1))
    			lmax = fliplr(indmax(2:min(end,nbsym+1)));
    			lmin = fliplr(indmin(1:min(end,nbsym)));
    			lsym = indmax(1);
    		else
    			lmax = fliplr(indmax(1:min(end,nbsym)));
    			lmin = [fliplr(indmin(1:min(end,nbsym-1))),1];
    			lsym = 1;
    		end
    	else
    
    		if x(1) < x(indmax(1))
    			lmax = fliplr(indmax(1:min(end,nbsym)));
    			lmin = fliplr(indmin(2:min(end,nbsym+1)));
    			lsym = indmin(1);
    		else
    			lmax = [fliplr(indmax(1:min(end,nbsym-1))),1];
    			lmin = fliplr(indmin(1:min(end,nbsym)));
    			lsym = 1;
    		end
    	end
        
    	if indmax(end) < indmin(end)
    		if x(end) < x(indmax(end))
    			rmax = fliplr(indmax(max(end-nbsym+1,1):end));
    			rmin = fliplr(indmin(max(end-nbsym,1):end-1));
    			rsym = indmin(end);
    		else
    			rmax = [lx,fliplr(indmax(max(end-nbsym+2,1):end))];
    			rmin = fliplr(indmin(max(end-nbsym+1,1):end));
    			rsym = lx;
    		end
    	else
    		if x(end) > x(indmin(end))
    			rmax = fliplr(indmax(max(end-nbsym,1):end-1));
    			rmin = fliplr(indmin(max(end-nbsym+1,1):end));
    			rsym = indmax(end);
    		else
    			rmax = fliplr(indmax(max(end-nbsym+1,1):end));
    			rmin = [lx,fliplr(indmin(max(end-nbsym+2,1):end))];
    			rsym = lx;
    		end
    	end
        
    	tlmin = 2*t(lsym)-t(lmin);
    	tlmax = 2*t(lsym)-t(lmax);
    	trmin = 2*t(rsym)-t(rmin);
    	trmax = 2*t(rsym)-t(rmax);
        
    	% in case symmetrized parts do not extend enough
    	if tlmin(1) > t(1) || tlmax(1) > t(1)
    		if lsym == indmax(1)
    			lmax = fliplr(indmax(1:min(end,nbsym)));
    		else
    			lmin = fliplr(indmin(1:min(end,nbsym)));
    		end
    		if lsym == 1
    			error('bug')
    		end
    		lsym = 1;
    		tlmin = 2*t(lsym)-t(lmin);
    		tlmax = 2*t(lsym)-t(lmax);
    	end   
        
    	if trmin(end) < t(lx) || trmax(end) < t(lx)
    		if rsym == indmax(end)
    			rmax = fliplr(indmax(max(end-nbsym+1,1):end));
    		else
    			rmin = fliplr(indmin(max(end-nbsym+1,1):end));
    		end
    	if rsym == lx
    		error('bug')
    	end
    		rsym = lx;
    		trmin = 2*t(rsym)-t(rmin);
    		trmax = 2*t(rsym)-t(rmax);
    	end 
              
    	zlmax =z(lmax); 
    	zlmin =z(lmin);
    	zrmax =z(rmax); 
    	zrmin =z(rmin);
         
    	tmin = [tlmin t(indmin) trmin];
    	tmax = [tlmax t(indmax) trmax];
    	zmin = [zlmin z(indmin) zrmin];
    	zmax = [zlmax z(indmax) zrmax];
    end
        
    %---------------------------------------------------------------------------------------------------
    %extracts the indices of extrema
    function [indmin, indmax, indzer] = extr(x,t)
    
    if(nargin==1)
      t=1:length(x);
    end
    
    m = length(x);
    
    if nargout > 2
      x1=x(1:m-1);
      x2=x(2:m);
      indzer = find(x1.*x2<0);
    
      if any(x == 0)
        iz = find( x==0 );
        indz = [];
        if any(diff(iz)==1)
          zer = x == 0;
          dz = diff([0 zer 0]);
          debz = find(dz == 1);
          finz = find(dz == -1)-1;
          indz = round((debz+finz)/2);
        else
          indz = iz;
        end
        indzer = sort([indzer indz]);
      end
    end
    
    d = diff(x);
    
    n = length(d);
    d1 = d(1:n-1);
    d2 = d(2:n);
    indmin = find(d1.*d2<0 & d1<0)+1;
    indmax = find(d1.*d2<0 & d1>0)+1;
    
    
    % when two or more successive points have the same value we consider only one extremum in the middle of the constant area
    % (only works if the signal is uniformly sampled)
    
    if any(d==0)
    
      imax = [];
      imin = [];
    
      bad = (d==0);
      dd = diff([0 bad 0]);
      debs = find(dd == 1);
      fins = find(dd == -1);
      if debs(1) == 1
        if length(debs) > 1
          debs = debs(2:end);
          fins = fins(2:end);
        else
          debs = [];
          fins = [];
        end
      end
      if length(debs) > 0
        if fins(end) == m
          if length(debs) > 1
            debs = debs(1:(end-1));
            fins = fins(1:(end-1));
    
          else
            debs = [];
            fins = [];
          end
        end
      end
      lc = length(debs);
      if lc > 0
        for k = 1:lc
          if d(debs(k)-1) > 0
            if d(fins(k)) < 0
              imax = [imax round((fins(k)+debs(k))/2)];
            end
          else
            if d(fins(k)) > 0
              imin = [imin round((fins(k)+debs(k))/2)];
            end
          end
        end
      end
    
      if length(imax) > 0
        indmax = sort([indmax imax]);
      end
    
      if length(imin) > 0
        indmin = sort([indmin imin]);
      end
    
    end
    end
    
    %---------------------------------------------------------------------------------------------------
    
    function ort = io(x,imf)
    % ort = IO(x,imf) computes the index of orthogonality
    %
    % inputs : - x    : analyzed signal
    %          - imf  : empirical mode decomposition
    
    n = size(imf,1);
    
    s = 0;
    
    for i = 1:n
      for j =1:n
        if i~=j
          s = s + abs(sum(imf(i,:).*conj(imf(j,:)))/sum(x.^2));
        end
      end
    end
    
    ort = 0.5*s;
    end
    %---------------------------------------------------------------------------------------------------
    
    function [x,t,sd,sd2,tol,MODE_COMPLEX,ndirs,display_sifting,sdt,sd2t,r,imf,k,nbit,NbIt,MAXITERATIONS,FIXE,FIXE_H,MAXMODES,INTERP,mask] = init(varargin)
    
    x = varargin{1};
    if nargin == 2
      if isstruct(varargin{2})
        inopts = varargin{2};
      else
        error('when using 2 arguments the first one is the analyzed signal X and the second one is a struct object describing the options')
      end
    elseif nargin > 2
      try
        inopts = struct(varargin{2:end});
      catch
        error('bad argument syntax')
      end
    end
    
    % default for stopping
    defstop = [0.05,0.5,0.05];
    
    opt_fields = {'t','stop','display','maxiterations','fix','maxmodes','interp','fix_h','mask','ndirs','complex_version'};
    
    defopts.stop = defstop;
    defopts.display = 0;
    defopts.t = 1:max(size(x));
    defopts.maxiterations = 2000;
    defopts.fix = 0;
    defopts.maxmodes = 0;
    defopts.interp = 'spline';
    defopts.fix_h = 0;
    defopts.mask = 0;
    defopts.ndirs = 4;
    defopts.complex_version = 2;
    
    opts = defopts;
    
    
    
    if(nargin==1)
      inopts = defopts;
    elseif nargin == 0
      error('not enough arguments')
    end
    
    
    names = fieldnames(inopts);
    for nom = names'
      if ~any(strcmpi(char(nom), opt_fields))
        error(['bad option field name: ',char(nom)])
      end
      if ~isempty(eval(['inopts.',char(nom)])) % empty values are discarded
        eval(['opts.',lower(char(nom)),' = inopts.',char(nom),';'])
      end
    end
    
    t = opts.t;
    stop = opts.stop;
    display_sifting = opts.display;
    MAXITERATIONS = opts.maxiterations;
    FIXE = opts.fix;
    MAXMODES = opts.maxmodes;
    INTERP = opts.interp;
    FIXE_H = opts.fix_h;
    mask = opts.mask;
    ndirs = opts.ndirs;
    complex_version = opts.complex_version;
    
    if ~isvector(x)
      error('X must have only one row or one column')
    end
    
    if size(x,1) > 1
      x = x.';
    end
    
    if ~isvector(t)
      error('option field T must have only one row or one column')
    end
    
    if ~isreal(t)
      error('time instants T must be a real vector')
    end
    
    if size(t,1) > 1
      t = t';
    end
    
    if (length(t)~=length(x))
      error('X and option field T must have the same length')
    end
    
    if ~isvector(stop) || length(stop) > 3
      error('option field STOP must have only one row or one column of max three elements')
    end
    
    if ~all(isfinite(x))
      error('data elements must be finite')
    end
    
    if size(stop,1) > 1
      stop = stop';
    end
    
    L = length(stop);
    if L < 3
      stop(3)=defstop(3);
    end
    
    if L < 2
      stop(2)=defstop(2);
    end
    
    
    if ~ischar(INTERP) || ~any(strcmpi(INTERP,{'linear','cubic','spline'}))
      error('INTERP field must be ''linear'', ''cubic'', ''pchip'' or ''spline''')
    end
    
    %special procedure when a masking signal is specified
    if any(mask)
      if ~isvector(mask) || length(mask) ~= length(x)
        error('masking signal must have the same dimension as the analyzed signal X')
      end
    
      if size(mask,1) > 1
        mask = mask.';
      end
      opts.mask = 0;
      imf1 = emd(x+mask,opts);
      imf2 = emd(x-mask,opts);
      if size(imf1,1) ~= size(imf2,1)
        warning('emd:warning',['the two sets of IMFs have different sizes: ',int2str(size(imf1,1)),' and ',int2str(size(imf2,1)),' IMFs.'])
      end
      S1 = size(imf1,1);
      S2 = size(imf2,1);
      if S1 ~= S2
        if S1 < S2
          tmp = imf1;
          imf1 = imf2;
          imf2 = tmp;
        end
        imf2(max(S1,S2),1) = 0;
      end
      imf = (imf1+imf2)/2;
    
    end
    
    
    sd = stop(1);
    sd2 = stop(2);
    tol = stop(3);
    
    lx = length(x);
    
    sdt = sd*ones(1,lx);
    sd2t = sd2*ones(1,lx);
    
    if FIXE
      MAXITERATIONS = FIXE;
      if FIXE_H
        error('cannot use both ''FIX'' and ''FIX_H'' modes')
      end
    end
    
    MODE_COMPLEX = ~isreal(x)*complex_version;
    if MODE_COMPLEX && complex_version ~= 1 && complex_version ~= 2
      error('COMPLEX_VERSION parameter must equal 1 or 2')
    end
    
    
    % number of extrema and zero-crossings in residual
    ner = lx;
    nzr = lx;
    
    r = x;
    
    if ~any(mask) % if a masking signal is specified "imf" already exists at this stage
      imf = [];
    end
    k = 1;
    
    % iterations counter for extraction of 1 mode
    nbit=0;
    
    % total iterations counter
    NbIt=0;
    end
    %---------------------------------------------------------------------------------------------------

    关于EMD,有对应的工具箱。VMD也有扩展的二维分解,此处不再展开。

    三、一种权衡的小trick

    关于瞬时频率的原理以及代码,参考另一篇博文

    比较来看:

    • EMD分解的IMF分量个数不能人为设定,而VMD(Variational Mode Decomposition)则可以;
    • 但VMD也有弊端:分解过多,则信号断断续续,没有多少规律可言。

    能不能取长补短呢?

    自己之前做了一个小code,放在这里,供大家交流使用(此理论为自己首创,版权所有,拿去也不介意!(●'◡'●))。
    给定一个信号,下图是EMD分解结果,分解出了5个分量。

    再来一个VMD(设定分量个数为3)的分解结果:

    比较两个结果,可以发现:VMD的低频分量,更容易表达出经济波动的大趋势,而EMD则不易观察该特性。
    或许有人会说:几个EMD分量叠加一下,也会有该效果,但如果不观察分解的数据,如何确定几个分量相加呢?更何况EMD总的IMF个数也是未知!

    VMD的优势观察到了,但如何确定分量个数呢?
    再来一个效果图:

    这里分析了VMD分量从1~9,9种情况下某特征的曲线,可以观察到:个数增加到一定数量,曲线有了明显的下弯曲现象(该特性容易借助曲率,进行量化分析,不再展开),这个临界的个数就是分解的合适数量,此处:K=3,因为到4就有了明显的下弯曲。

    可见通过该特征,即可理论上得出最优K。下面讲一讲这个某特征为何物?
    上一段代码:

    for st=1:9
        K=st+1; 
        [u, u_hat, omega] = VMD(data, length(data), 0, K, 0, 1, 1e-5);
        u=flipud(u);
        resf=zeros(1,K);
        for i=1:K
            testdata=u(i,:);
            hilbert(testdata');  
            z=hilbert(testdata');                   % 希尔伯特变换
            a=abs(z);                               % 包络线
            fnor=instfreq(z);                       % 瞬时频率
            resf(i)=mean(fnor);      
        end
        subplot(3,3,st)
        plot(resf,'k');title(['个数为',num2str(st)]);grid on;
    end
    

      没错,该特征就是:分量瞬时频率的均值。如果分解个数过大,则分量会出现断断絮絮地现象,特别是在高频,这样一来,即使是高频,平均瞬时频率反而低一些,这也是下弯曲的根本原因。

    这个小trick就介绍到这里。

    四、问题补充

    HHT算法中,有两处存在端点效应,VMD是否也有呢?这一点没有再去验证。另外,关于Hilbert的端点效应,在另一篇博文已经给出。

    参考:

    宋知用:《MATLAB在语音信号分析和合成中的应用》

    了凡春秋: http://blog.sina.com.cn/s/blog_6163bdeb0102e2cd.html

    VMD-code:https://cn.mathworks.com/matlabcentral/fileexchange/44765-variational-mode-decomposition

    EMD原理图:http://blog.sciencenet.cn/blog-244606-256958.html

  • 相关阅读:
    在Linux CentOS上编译并安装Clang 3.5.0
    在Linux CentOS 6.6上安装Python 2.7.9
    Mac OS X上用CoreCLR运行一个真正的.NET控制台程序
    在Mac OS X上用自己编译出的CoreCLR运行.NET程序
    Mac OS X上尝试编译CoreCLR源代码
    Linux上成功编译CoreCLR源代码
    CoreCLR中超过3万行代码的gc.cpp文件的来源
    Windows上成功编译CoreCLR源代码
    “CoreCLR is now Open Source”阅读笔记
    AutoMapper指定列名进行映射
  • 原文地址:https://www.cnblogs.com/xingshansi/p/6511916.html
Copyright © 2011-2022 走看看