zoukankan      html  css  js  c++  java
  • 4. 线性回归-python实现

     1 # 数据集生成
     2 import numpy as np
     3 import torch
     4 import matplotlib.pyplot as plt
     5 import torch.utils.data as Data
     6 from torch import nn
     7 from torch.nn import init
     8 
     9 num_inputs = 2
    10 num_outputs = 1
    11 num_samples = 1000
    12 
    13 weight_true = torch.tensor([[2], [-3.4]])
    14 true_w = [2,-3.4]
    15 bais_true = -4.2
    16 features = torch.tensor(np.random.normal(0, 1, (num_samples, num_inputs)), dtype=torch.float)
    17 labels = torch.mm(features, weight_true) + bais_true
    18 #features = torch.tensor(np.random.normal(0, 1, (num_samples, num_inputs)), dtype=torch.float)
    19 #labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + bais_true
    20 labels += torch.tensor(np.random.normal(0, 0.01, size=labels.size()), dtype=torch.float)
    21 
    22 # 加载数据
    23 #batch_size = 50
    24 #dataset = Data.TensorDataset(features, labels)
    25 #dataiter = Data.DataLoader(dataset, batch_size, shuffle=True)
    26 
    27 batch_size = 10
    28 # 将训练数据的特征和标签组合
    29 dataset = Data.TensorDataset(features, labels)
    30 # 随机读取小批量
    31 data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
    32 
    33 # 模型
    34 class LineNet(nn.Module):
    35     def __init__(self, n_feature):
    36         super(LineNet, self).__init__()
    37         self.linear = nn.Linear(n_feature, 1)
    38     # forward 定义前向传播
    39     def forward(self, x):
    40         y = self.linear(x)
    41         return y
    42 
    43 net = LineNet(num_inputs)
    44 print(net)
    45 
    46 # 模型参数
    47 init.normal_(net.linear.weight, mean=0, std=0.01)
    48 init.constant_(net.linear.bias, val=0)  # 也可以直接修改bias的data: net[0].bias.data.fill_(0)
    49 
    50 # 损失函数
    51 loss = nn.MSELoss()
    52 # 算法优化
    53 optimzer = torch.optim.SGD(net.parameters(),lr=0.04)
    54 # 训练
    55 num_epochs = 100
    56 for epoch in range(num_epochs):
    57     train_l = 0.0
    58     for X,y in data_iter:
    59         output = net(X)
    60         l = loss(output, y.view(-1, 1))
    61         optimzer.zero_grad() # 梯度清零,等价于net.zero_grad()
    62         l.backward()
    63         optimzer.step()
    64 
    65         train_l+=l
    66     print('epoch %d ,loss %.4f' % (epoch + 1, train_l))
    67     print(f'权重weight:{net.linear.weight},偏差bais{net.linear.bias}')
    68 
    69 
    70 
    71 plt.scatter(features[:, 0].numpy(), labels.numpy(), 10, 'r')
    72 plt.scatter(features[:, 1].numpy(), labels.numpy(), 10, 'g')
    73 plt.show()

    运行结果:

     抛出问题:在做features数据集使用的是标准正态分布,但如果std != 1 就是拟合不出结果,如果那个高手知道。麻烦指导下,谢谢。

  • 相关阅读:
    Linux文件和目录管理常用重要命令
    Windows和Linux下Mysql 重置root 密码
    瀑布流vue-waterfall的高度设置
    vue-cli 引入axios及跨域使用
    Vue 脱坑记
    shell基础
    正则
    安装卸载
    压缩打包
    vim工具
  • 原文地址:https://www.cnblogs.com/xingyuanzier/p/15173640.html
Copyright © 2011-2022 走看看