思路
1. 第一遍做时就参考别人的, 现在又忘记了 做的时候使用的是二维动态规划, 超时加超内存
2. 只当 string 左部分是回文的时候才有可能减少 cut
3. 一维动规. 令 cuts[i] 表示string[i, string.size()] 所需的切割数, 那么
状态转移方程为 cuts[i] = min(cuts[j]+1) j > i && string[i, j] is palindrome
时间复杂度上仍是 o(n*n), 但更新 cuts 的限制条件比较多了, cuts[i] 更新频率较低
代码:
超时二维动规代码
#include <iostream> #include <memory.h> using namespace std; int cuts[1000][1000]; int palindrom[1000][1000]; const int INFS = 0x3f3f3f3f; class Solution { public: int minCut(string s) { memset(cuts, 0x3f, sizeof(cuts)); memset(palindrom, 0x3f, sizeof(palindrom)); int curcuts = countCuts(s,0,s.size()-1); return curcuts; } int countCuts(string &s, int i, int j) { if(j <= i) return 0; if(isPalindrome(s,i,j)) return (cuts[i][j]=0); if(cuts[i][j] != INFS) return cuts[i][j]; int curcuts = INFS; for(int k = i; k < j; k++) { curcuts = min(curcuts, 1+countCuts(s,i,k)+countCuts(s,k+1,j)); } return (cuts[i][j]=curcuts); } bool isPalindrome(string &s, int i, int j) { if(palindrom[i][j] == 1) return true; if(j <= i) return (palindrom[i][j] = true); if(palindrom[i][j] == 0) return false; return (palindrom[i][j] = (s[i]==s[j] && isPalindrome(s,i+1,j-1))); } }; int main() { string str = "apjesgpsxoeiokmqmfgvjslcjukbqxpsobyhjpbgdfruqdkeiszrlmtwgfxyfostpqczidfljwfbbrflkgdvtytbgqalguewnhvvmcgxboycffopmtmhtfizxkmeftcucxpobxmelmjtuzigsxnncxpaibgpuijwhankxbplpyejxmrrjgeoevqozwdtgospohznkoyzocjlracchjqnggbfeebmuvbicbvmpuleywrpzwsihivnrwtxcukwplgtobhgxukwrdlszfaiqxwjvrgxnsveedxseeyeykarqnjrtlaliyudpacctzizcftjlunlgnfwcqqxcqikocqffsjyurzwysfjmswvhbrmshjuzsgpwyubtfbnwajuvrfhlccvfwhxfqthkcwhatktymgxostjlztwdxritygbrbibdgkezvzajizxasjnrcjwzdfvdnwwqeyumkamhzoqhnqjfzwzbixclcxqrtniznemxeahfozp"; cout << str.size() << endl; cout << (new Solution())->minCut(str) << endl; return 0; }
优化后的一维动规
#include <iostream> #include <memory.h> using namespace std; int cuts[1500]; int palindrom[1500][1500]; const int INFS = 0x3f3f3f3f; class Solution { public: int minCut(string s) { memset(cuts, 0x3f, sizeof(cuts)); memset(palindrom, 0x3f, sizeof(palindrom)); int curcuts = countCuts(s,0,s.size()-1); return curcuts; } int countCuts(string &s, int i, int j) { if(j <= i) return 0; if(isPalindrome(s,i,j)) return 0; if(cuts[i] != INFS) return cuts[i]; int curcuts = INFS; for(int k = i; k < j; k++) { if(isPalindrome(s,i,k)) curcuts = min(curcuts, 1+countCuts(s,k+1,j)); } return (cuts[i]=curcuts); } bool isPalindrome(string &s, int i, int j) { if(palindrom[i][j] == 1) return true; if(j <= i) return (palindrom[i][j] = true); if(palindrom[i][j] == 0) return false; return (palindrom[i][j] = (s[i]==s[j] && isPalindrome(s,i+1,j-1))); } }; int main() { string str = "bb"; cout << str.size() << endl; cout << (new Solution())->minCut(str) << endl; return 0; }
I
第一题用动态规划也是可以做的, 不过会比较麻烦(与Word Break类似)
这里用 dfs 加打印路径, 比较直观
int palindrom[1500][1500]; vector<vector<string> > res; class Solution { public: vector<vector<string>> partition(string s) { res.clear(); memset(palindrom, 0x3f, sizeof(palindrom)); vector<string> tmp; dfs(s, tmp, 0); return res; } bool isPalindrome(string &s, int i, int j) { if(palindrom[i][j] == 1) return true; if(j <= i) return (palindrom[i][j] = true); if(palindrom[i][j] == 0) return false; return (palindrom[i][j] = (s[i]==s[j] && isPalindrome(s,i+1,j-1))); } void dfs(string &s, vector<string> cur_vec, int depth) { if(depth == s.size()) { res.push_back(cur_vec); return; } for(int i = depth; i < s.size(); i ++) { if(isPalindrome(s, depth,i)) { cur_vec.push_back(s.substr(depth,i-depth+1)); dfs(s, cur_vec, i+1); cur_vec.pop_back(); } } } };