最近在看决策树的模型,其中涉及到信息熵的计算,这里东西是由信号处理中来的,理论部分我就不再重复前人的东西了,下面给出两个简单的公式:
当然学习过信号与系统的童鞋一定觉得这不是香农提出的东西吗?O(∩_∩)O~没错,就是这个东西,只不过我们用在了机器学习上,好了下面就看代码吧,这些代码也很简单,我们知道信息熵越大表示所含信息量越多。
下面是计算信息熵的方法,以及测试代码:
import math def cacShannonEnt(dataset): numEntries = len(dataset) labelCounts = {} for featVec in dataset: currentLabel = featVec[-1] if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] +=1 shannonEnt = 0.0 for key in labelCounts: prob = float(labelCounts[key])/numEntries shannonEnt -= prob*math.log(prob, 2) return shannonEnt def CreateDataSet(): dataset = [[1, 1, 'yes' ], [1, 1, 'yes' ], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing', 'flippers'] return dataset, labels myDat,labels = CreateDataSet() print(cacShannonEnt(myDat))
第一个函数式计算信息熵的,第二个函数是创建数据的。