zoukankan      html  css  js  c++  java
  • uva-712 S-Trees

    A Strange Tree (S-tree) over the variable set $X_n = {x_1, x_2, dots, x_n}$ is a binary tree representing a Boolean function$f: {0, 1}^n 
ightarrow { 0, 1}$. Each path of the S-tree begins at the root node and consists of n+1 nodes. Each of the S-tree's nodes has a depth, which is the amount of nodes between itself and the root (so the root has depth 0). The nodes with depth less than n are called non-terminal nodes. All non-terminal nodes have two children: the right child and the left child. Each non-terminal node is marked with some variable xi from the variable set Xn. All non-terminal nodes with the same depth are marked with the same variable, and non-terminal nodes with different depth are marked with different variables. So, there is a unique variable xi1 corresponding to the root, a unique variable xi2 corresponding to the nodes with depth 1, and so on. The sequence of the variables $x_{i_1}, x_{i_2}, dots, x_{i_n}$ is called the variable ordering. The nodes having depth n are called terminal nodes. They have no children and are marked with either 0 or 1. Note that the variable ordering and the distribution of 0's and 1's on terminal nodes are sufficient to completely describe an S-tree.

    As stated earlier, each S-tree represents a Boolean function f. If you have an S-tree and values for the variables $x_1, x_2, dots, x_n$, then it is quite simple to find out what $f(x_1, x_2, dots, x_n)$ is: start with the root. Now repeat the following: if the node you are at is labelled with a variable xi, then depending on whether the value of the variable is 1 or 0, you go its right or left child, respectively. Once you reach a terminal node, its label gives the value of the function.

     

     

    Figure 1: S-trees for the function $x_1 wedge (x_2 vee x_3)$

    On the picture, two S-trees representing the same Boolean function, $f(x_1, x_2, x_3) = x_1 wedge (x_2 vee x_3)$, are shown. For the left tree, the variable ordering is x1x2x3, and for the right tree it is x3x1x2.

    The values of the variables $x_1, x_2, dots, x_n$, are given as a Variable Values Assignment (VVA) 

     

    egin{displaymath}(x_1 = b_1, x_2 = b_2, dots, x_n = b_n)end{displaymath}

     

    with  $b_1, b_2, dots, b_n in {0,1}$ . For instance, (  x 1  = 1,  x 2  = 1  x 3  = 0) would be a valid VVA for  n  = 3, resulting for the sample function above in the value  $f(1, 1, 0) = 1 wedge (1 vee 0) = 1$ . The corresponding paths are shown bold in the picture.

    Your task is to write a program which takes an S-tree and some VVAs and computes $f(x_1, x_2, dots, x_n)$ as described above.

     

    Input 

    The input file contains the description of several S-trees with associated VVAs which you have to process. Each description begins with a line containing a single integer  n $1 le n le 7$ , the depth of the S-tree. This is followed by a line describing the variable ordering of the S-tree. The format of that line is  x i 1   x i 2  ... x i n . (There will be exactly  n  different space-separated strings). So, for  n  = 3 and the variable ordering  x 3 x 1 x 2 , this line would look as follows:

    x3 x1 x2

    In the next line the distribution of 0's and 1's over the terminal nodes is given. There will be exactly 2n characters (each of which can be 0 or 1), followed by the new-line character. The characters are given in the order in which they appear in the S-tree, the first character corresponds to the leftmost terminal node of the S-tree, the last one to its rightmost terminal node.

    The next line contains a single integer m, the number of VVAs, followed by m lines describing them. Each of the m lines contains exactlyn characters (each of which can be 0 or 1), followed by a new-line character. Regardless of the variable ordering of the S-tree, the first character always describes the value of x1, the second character describes the value of x2, and so on. So, the line

    110

    corresponds to the VVA ( x1 = 1, x2 = 1, x3 = 0).

    The input is terminated by a test case starting with n = 0. This test case should not be processed.

     

    Output 

    For each S-tree, output the line `` S-Tree # j : ", where  j  is the number of the S-tree. Then print a line that contains the value of $f(x_1, x_2, dots, x_n)$  for each of the given  m  VVAs, where  f  is the function defined by the S-tree.

    Output a blank line after each test case.

     

    Sample Input 

     

    3
    x1 x2 x3
    00000111
    4
    000
    010
    111
    110
    3
    x3 x1 x2
    00010011
    4
    000
    010
    111
    110
    0
    

     

    Sample Output 

    S-Tree #1:
    0011
    
    S-Tree #2:
    0011
    
    题目意思:给出叶子节点,给出遍历顺序,求遍历结果,对于011如果层次为X3,X1,X2则遍历顺序为101;
    解题思路:用数组代替建树,模拟即可。
    #include<iostream>
    
    using namespace std;
    #include<cstdio>
    
    int main()
    {
        int n;
        int cas=1;
        int tab[20];
        int terminal[300];
        while(cin>>n,n)
        {
            char order[20];
            for(int i=1;i<=n;i++)
            {
                scanf("%s",order);
                sscanf(&order[1],"%1d",&tab[i]);
            }
            int num=1;
            for(int i=1;i<=n;i++)
                num*=2;
            for(int i=1;i<=num;i++)
                scanf("%1d",&terminal[i]);
            int m;
            scanf("%d",&m);
            string ans;
            for(int i=0;i<m;i++)
            {
                int index=1;
                int step[20];
                for(int j=1;j<=n;j++)
                {
                    scanf("%1d",&step[j]);
                }
                for(int j=1;j<=n;j++)
                {
                    if(step[tab[j]])
                        index*=2;
                    else index=index*2-1;
                }
                ans+=terminal[index]+'0';
                //printf("%d",terminal[index]);
            }
            cout<<"S-Tree #"<<cas++<<":"<<endl;
            cout<<ans<<endl<<endl;
            //printf("
    ");
        }
    }


  • 相关阅读:
    gems gems gems
    poj 6206 Apple
    lightoj1341唯一分解定理
    lightoj1370欧拉函数
    约瑟夫环lightoj1179
    拓展欧几里得算法
    RMQ算法
    poj1502MPI Maelstrom
    poj1860Currency Exchange
    生成全排列
  • 原文地址:https://www.cnblogs.com/xinyuyuanm/p/3177816.html
Copyright © 2011-2022 走看看