zoukankan      html  css  js  c++  java
  • hdu 1189 并查集

                                  Farm Irrigation

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 4802    Accepted Submission(s): 2073


    Problem Description
    Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a lot of samll squares. Water pipes are placed in these squares. Different square has a different type of pipe. There are 11 types of pipes, which is marked from A to K, as Figure 1 shows.


    Figure 1


    Benny has a map of his farm, which is an array of marks denoting the distribution of water pipes over the whole farm. For example, if he has a map 

    ADC
    FJK
    IHE

    then the water pipes are distributed like 


    Figure 2


    Several wellsprings are found in the center of some squares, so water can flow along the pipes from one square to another. If water flow crosses one square, the whole farm land in this square is irrigated and will have a good harvest in autumn. 

    Now Benny wants to know at least how many wellsprings should be found to have the whole farm land irrigated. Can you help him? 

    Note: In the above example, at least 3 wellsprings are needed, as those red points in Figure 2 show.
     
    Input
    There are several test cases! In each test case, the first line contains 2 integers M and N, then M lines follow. In each of these lines, there are N characters, in the range of 'A' to 'K', denoting the type of water pipe over the corresponding square. A negative M or N denotes the end of input, else you can assume 1 <= M, N <= 50.
     
    Output
    For each test case, output in one line the least number of wellsprings needed.
     
    Sample Input
    2 2
    DK
    HF
    3 3
    ADC
    FJK
    IHE
    -1 -1
     
    Sample Output
    2
    3
     
    题目大意:正方型的田,若相邻的田水管接口可以相连,则他们之间联通。统计联通子图的个数。
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #define N 55
    using namespace std;
    
    int n,m,f[N*N];
    int map[55][55];
    int dir[4][2]={{0,-1},{-1,0},{0,1},{1,0}};
    
    int farm[11][4]={
        {1,0,0,1},
        {1,1,0,0},
        {0,0,1,1},
        {0,1,1,0},
        {1,0,1,0},
        {0,1,0,1},
        {1,1,0,1},
        {1,0,1,1},
        {0,1,1,1},
        {1,1,1,0},
        {1,1,1,1}
    };
    
    void init(){ for(int i=0; i<N*N; ++i)f[i]=i;}
    
    int findset(int x){ return f[x]!=x?f[x]=findset(f[x]):f[x];}
    
    void merge(int x,int y)
    {
        int a=findset(x), b=findset(y);
        if(a==b)return ;
        if(a<b) f[a]=b;
        else f[b]=a;
    }
    
    
    int main()
    {
        int i,j,k,dx,dy;
        char ch;
        while(scanf("%d%d%",&n,&m))
        {
            if(n==-1 && m==-1) break;
            for(i=0; i<n; ++i)
            {            
                for(j=0; j<m; ++j)
                {
                    scanf("%c",&ch);
                    map[i][j]=ch-'A';
                }
                getchar();
            }
            init();
            for(i=0; i<n; ++i)
            {
                for(j=0; j<m; ++j)
                {
                    for(k=0; k<4; ++k)
                    {
                        dx=i+dir[k][0],dy=j+dir[k][1];
                        if(dx<0||dx>=n||dy<0||dy>=m)continue;
                        if(k==0)//
                        { 
                            if(farm[map[dx][dy]][1]&&farm[map[i][j]][3]){
                                merge(dx*m+dy, i*m+j);
                            }
                        }
                        else if(k==1)//
                        { 
                            if(farm[map[dx][dy]][2]&&farm[map[i][j]][0]){
                                merge(dx*m+dy, i*m+j);
                            }
                        }
                        else if(k==2)//
                        { 
                            if(farm[map[dx][dy]][3]&&farm[map[i][j]][1]){
                                merge(dx*m+dy, i*m+j);
                            }
                        }
                        else if(k==3)//
                        { 
                            if(farm[map[dx][dy]][0]&&farm[map[i][j]][2]){
                                merge(dx*m+dy, i*m+j);
                            }
                        }
                    } 
                }
            }
            int cnt=0;
            for(i=0; i<n*m; ++i)
                if(f[i]==i) 
                    ++cnt;
            printf("%d
    ", cnt);
        }
        return 0;
    }
     
  • 相关阅读:
    WPF 打开文件 打开路径对话框
    WPF Button添加图片
    Delphi 正则表达式PerlRegEx
    解决Inet控件下载utf8网页乱码的问题
    Delphi程序结构
    VB 936(gb2312)URL编码与解码
    Chr 将一个有序数据转换为一个ANSI字符
    Delphi正则表达式使用方法(TPerlRegEx)
    Delphi类型转换
    Delphi 正则表达式TPerlRegEx 类的属性与方法
  • 原文地址:https://www.cnblogs.com/xiong-/p/3583456.html
Copyright © 2011-2022 走看看