zoukankan      html  css  js  c++  java
  • zoj 3791 An Easy Game dp

    An Easy Game

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    One day, Edward and Flandre play a game. Flandre will show two 01-strings s1 and s2, the lengths of two strings are n. Then, Edward must move exact k steps. In each step, Edward should change exact m positions of s1. That means exact m positions of s1, '0' will be changed to '1' and '1' will be changed to '0'.

    The problem comes, how many different ways can Edward change s1 to s2 after k steps? Please calculate the number of the ways mod 1000000009.

    Input

    Input will consist of multiple test cases and each case will consist of three lines. The first line of each case consist of three integers n (1 ≤ n ≤ 100), k (0 ≤ k ≤ 100), m (0 ≤ mn). The second line of each case is a 01-string s1. The third line of each case is a 01-string s2.

    Output

    For each test case, you should output a line consist of the result.

    Sample Input

    3 2 1
    100
    001
    

    Sample Output

    2
    

    Hint

    100->101->001
    100->000->001
    
    题目大意:给两个01字符串s1,s2,经过K次操作每次对M个取反,求有多少种方案使得s1==s2。

    dp[i][j]表示i次操作之后有j个位置不同的方法数,答案就是dp[t][0]。对于dp[i - 1][j],经过一次操作之后假设把t个位置从不同变为相同,剩下m - t个位置从相同变为不同。
    那么
    dp[i][j + m - t - t] += dp[i - 1][j] * C(j, t) * C(n - j, m - t)
    
    
    
    
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 using namespace std;
     5 
     6 typedef __int64 LL;
     7 const int maxn=110;
     8 const int Mod=1000000009;
     9 int n,k,m,C[maxn][maxn];
    10 LL d[maxn][maxn];
    11 char s1[maxn],s2[maxn];
    12 
    13 int max(int a,int b){return a>b?a:b;}
    14 
    15 void init_C()
    16 {
    17     memset(C,0,sizeof(C));
    18     int i,j;
    19     for(i=0;i<=100;i++)
    20     {
    21         C[i][0]=1;
    22         for(j=1;j<=i;j++)
    23         {
    24             C[i][j]=(C[i-1][j-1]+C[i-1][j])%Mod;
    25         }
    26     }
    27 }
    28 
    29 void solve()
    30 {
    31     memset(d,0,sizeof(d));
    32     int i,j,t,dif=0;
    33     for(i=0;i<n;i++) dif+=(s1[i]!=s2[i]?1:0);
    34     d[0][dif]=1;
    35     for(i=1;i<=k;i++)
    36     {
    37         for(j=0;j<=n;j++)
    38         {
    39             for(t=max(0,m-(n-j));t<=j && t<=m;t++)
    40             {
    41                 d[i][j+m-t-t]=(d[i][j+m-t-t]+d[i-1][j]*C[j][t]%Mod*C[n-j][m-t]%Mod)%Mod;
    42             }
    43         }
    44     }
    45     printf("%I64d
    ",d[k][0]);
    46 }
    47 int main()
    48 {    
    49     init_C();
    50     while(~scanf("%d %d %d",&n,&k,&m))
    51     {
    52         getchar();
    53         gets(s1);
    54         gets(s2);
    55         solve();
    56     }
    57     return 0;
    58 }
    
    
    
    
    
  • 相关阅读:
    树莓派服务器搭建
    设计模式之装饰者模式
    设计模式之建造者模式
    Java IO
    设计模式之抽象工厂模式
    常用排序算法(堆排序)
    Struts2框架简介和示例
    静态代理和利用反射形成的动态代理(JDK动态代理)
    常用排序算法(插入排序,快速排序,归并排序,堆排序)
    设计模式之简单工厂和工厂方法模式
  • 原文地址:https://www.cnblogs.com/xiong-/p/3765498.html
Copyright © 2011-2022 走看看