zoukankan      html  css  js  c++  java
  • hdu 2262 高斯消元求期望

    Where is the canteen

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 1070    Accepted Submission(s): 298


    Problem Description
    After a long drastic struggle with himself, LL decide to go for some snack at last. But when steping out of the dormitory, he found a serious problem : he can't remember where is the canteen... Even worse is the campus is very dark at night. So, each time he move, he check front, back, left and right to see which of those four adjacent squares are free, and randomly walk to one of the free squares until landing on a canteen.
     
    Input
    Each case begin with two integers n and m ( n<=15,m<=15 ), which indicate the size of the campus. Then n line follow, each contain m characters to describe the map. There are 4 different type of area in the map:

    '@' is the start location. There is exactly one in each case.
    '#' is an impassible square.
    '$' is a canteen. There may be more than one in the campus.
    '.' is a free square.
     
    Output
    Output the expected number of moves required to reach a canteen, which accurate to 6 fractional digits. If it is impossible , output -1.
     
    Sample Input
    1 2
    @$
    2 2
    @. .$
    1 3
    @#$
     
    Sample Output
    1.000000
    4.000000
    -1
     
    题目大意:一个图,一个起点多个终点,求到达终点的步数期望。
      1 #include <iostream>
      2 #include <cstring>
      3 #include <cstdio>
      4 #include <cmath>
      5 #include <queue>
      6 using namespace std;
      7 
      8 char map[20][20];
      9 int vis[20][20],d[20][20];//vis记录访问的标号,d记录改点的出度
     10 double A[230][230];
     11 int dir[4][2]={1,0,-1,0,0,1,0,-1};
     12 int n,m,cnt,stx,sty;
     13 const double eps=1e-8;
     14 int dcmp(double x)
     15 {
     16     if(fabs(x)<eps) return 0;
     17     if(x-0>eps) return 1;
     18     return -1;
     19 }
     20 void swap(int &a,int &b){int t=a;a=b;b=t;}
     21 struct point
     22 {
     23     int x,y;
     24 }p,t;
     25 
     26 void init()
     27 {
     28     int i,j;
     29     memset(vis,-1,sizeof(vis));
     30     memset(A,0,sizeof(A));
     31     memset(d,0,sizeof(d));
     32     for(i=0;i<n;i++)
     33     {
     34         getchar();
     35         for(j=0;j<m;j++)
     36         {
     37             scanf("%c",&map[i][j]);
     38             if(map[i][j]=='@')
     39                 stx=i,sty=j;
     40         }
     41     }
     42 }
     43 
     44 bool judge(point p)
     45 {
     46     if(0<=p.x&&p.x<n&&0<=p.y&&p.y<m&&map[p.x][p.y]!='#')
     47         return true;
     48     return false;
     49 }
     50 
     51 bool bfs()
     52 {
     53     queue<point> Q;
     54     p.x=stx;p.y=sty;cnt=0;
     55     Q.push(p);
     56     vis[p.x][p.y]=cnt++;
     57     bool flag=0;
     58     while(!Q.empty())
     59     {
     60         p=Q.front();Q.pop();
     61         for(int i=0;i<4;i++)
     62         {
     63             t.x=p.x+dir[i][0];t.y=p.y+dir[i][1];
     64             if(judge(t))
     65             {
     66                 if(map[t.x][t.y]=='$') flag=1;
     67                 d[p.x][p.y]++;
     68                 if(vis[t.x][t.y]!=-1) continue;
     69                 vis[t.x][t.y]=cnt++;
     70                 Q.push(t);        
     71             }
     72         }
     73     }
     74     return flag;
     75 }
     76 
     77 void build_matrix()
     78 {
     79     for(int i=0;i<n;i++)
     80     {
     81         for(int j=0;j<m;j++)
     82         {
     83             if(vis[i][j]==-1) continue;
     84             int u=vis[i][j];
     85             A[u][u]=1;
     86             if(map[i][j]=='$'){A[u][cnt]=0;continue;}
     87             double p=1.0/d[i][j];
     88             for(int k=0;k<4;k++)
     89             {
     90                 point temp;
     91                 temp.x=i+dir[k][0];temp.y=j+dir[k][1];
     92                 if(judge(temp) && vis[temp.x][temp.y]!=-1)
     93                 {
     94                     int v=vis[temp.x][temp.y];
     95                     A[u][v]-=p;
     96                     A[u][cnt]+=p;
     97                 }
     98             }
     99         }
    100     }
    101     A[0][cnt]=1;
    102 }
    103 
    104 void gauss(int n)
    105 {
    106     int i,j,k,r;
    107     for(i=0;i<n;i++)
    108     {
    109         r=i;
    110         for(j=i+1;j<n;j++)
    111             if(fabs(A[j][i])>fabs(A[r][i])) r=j;
    112         if(dcmp(A[r][i])==0) continue;
    113         if(r!=i) for(j=0;j<=n;j++) swap(A[r][j],A[i][j]);
    114         for(k=0;k<n;k++) if(k!=i)
    115             for(j=n;j>=i;j--) A[k][j]-=A[k][i]/A[i][i]*A[i][j];
    116     }
    117     for(i=n-1;i>=0;i--)
    118     {
    119          for(j=i+1;j<cnt;j++)
    120             A[i][cnt]-=A[j][cnt]*A[i][j];
    121          A[i][cnt]/=A[i][i];
    122     }
    123 }
    124 
    125 int main()
    126 {
    127     while(~scanf("%d%d",&n,&m))
    128     {
    129         init();
    130         if(!bfs()){puts("-1");continue;}
    131         build_matrix();
    132         gauss(cnt);
    133         printf("%.6lf
    ",A[0][cnt]);
    134     }
    135     return 0;
    136 }
     
     
  • 相关阅读:
    由数字三角形问题理解动态规划
    堆排序
    清理oracle数据库空间
    十个常用破解网络密码的方法
    说说windows下64位程序和32位程序
    sql server使用第二记
    手机通讯录PK
    sql server 初级实践记
    You and your research ( Richard Hamming) P5
    TED
  • 原文地址:https://www.cnblogs.com/xiong-/p/3913569.html
Copyright © 2011-2022 走看看