zoukankan      html  css  js  c++  java
  • [建树(非二叉树)] 1090. Highest Price in Supply Chain (25)

    1090. Highest Price in Supply Chain (25)

    A supply chain is a network of retailers(零售商), distributors(经销商), and suppliers(供应商)-- everyone involved in moving a product from supplier to customer.

    Starting from one root supplier, everyone on the chain buys products from one's supplier in a price P and sell or distribute them in a price that is r% higher than P. It is assumed that each member in the supply chain has exactly one supplier except the root supplier, and there is no supply cycle.

    Now given a supply chain, you are supposed to tell the highest price we can expect from some retailers.

    Input Specification:

    Each input file contains one test case. For each case, The first line contains three positive numbers: N (<=105), the total number of the members in the supply chain (and hence they are numbered from 0 to N-1); P, the price given by the root supplier; and r, the percentage rate of price increment for each distributor or retailer. Then the next line contains N numbers, each number Si is the index of the supplier for the i-th member. Sroot for the root supplier is defined to be -1. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print in one line the highest price we can expect from some retailers, accurate up to 2 decimal places, and the number of retailers that sell at the highest price. There must be one space between the two numbers. It is guaranteed that the price will not exceed 1010.

    Sample Input:
    9 1.80 1.00
    1 5 4 4 -1 4 5 3 6
    
    Sample Output:
    1.85 2
    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    using namespace std;
    
    const int maxn=1e5+10;
    const int INF=1e9;
    struct Node
    {
        int data;
        vector<int> child;
    }node[maxn];
    
    int max_deep=0;
    int layer[maxn]={0};
    
    void dfs(int s,int &deep)
    {
        if(node[s].child.size()==0)
        {
            layer[deep]+=1;
            max_deep=max_deep>deep?max_deep:deep;
            return ;
        }
        for(int i=0;i<node[s].child.size();i++)
        {
            int v=node[s].child[i];
            deep+=1;
            dfs(v,deep);
            deep-=1;
        }
    }
    
    int main()
    {
        int n;
        double p,r;
        cin>>n>>p>>r;
        int root;
        for(int i=0;i<n;i++)
        {
            int f;
            ////scanf("%d",&f);
            cin>>f;
            if(f==-1)
            {
                root=i;
                continue;
            }
            node[f].child.push_back(i);
        
        }
        int deep=0;
        dfs(root,deep);
        double sum=p;
        int tmp=max_deep;
        while(tmp>0)
        {
            tmp--;
            sum*=(1+r/100.);
        }
        printf("%.2lf %d
    ",sum,layer[max_deep]);
    }
  • 相关阅读:
    Java设计模式(十二) 策略模式
    Java设计模式(二) 工厂方法模式
    Java设计模式(一) 简单工厂模式不简单
    Kafka设计解析(四)- Kafka Consumer设计解析
    Kafka设计解析(三)- Kafka High Availability (下)
    Kafka设计解析(二)- Kafka High Availability (上)
    Spark 灰度发布在十万级节点上的成功实践 CI CD
    Spark SQL / Catalyst 内部原理 与 RBO
    Java进阶(七)正确理解Thread Local的原理与适用场景
    Kafka设计解析(八)- Exactly Once语义与事务机制原理
  • 原文地址:https://www.cnblogs.com/xiongmao-cpp/p/6475552.html
Copyright © 2011-2022 走看看