zoukankan      html  css  js  c++  java
  • 并查集

    并查集的三个主要操作:

    1、Make_Set(x) 把每一个元素初始化为一个集合 初始化后每一个元素的父亲节点是它本身,每一个元素的祖先节点也是它本身(也可以根据情况而变)。

    2、Find_Set(x) 查找一个元素所在的集合 查找一个元素所在的集合,其精髓是找到这个元素所在集合的祖先!这个才是并查集判断和合并的最终依据。

      判断两个元素是否属于同一集合,只要看他们所在集合的祖先是否相同即可。 合并两个集合,也是使一个集合的祖先成为另一个集合的祖先

    3、Union(x,y) 合并x,y所在的两个集合 合并两个不相交集合操作很简单: 利用Find_Set找到其中两个集合的祖先,将一个集合的祖先指向另一个集合的祖先

    并查集的精妙之处在于用树来表示集合。如包含1,2,3,4,5,6的图有3个连通分量{1,2},{3,4,5},{6},则需要3颗树表示,这3颗树的具体形态无关紧要,

    一般规定每颗树的根节点是这颗树所对应集合的代表元

    把x的父节点保存在p[x]中,如果x没有父亲,则p[x]=x

    int Find_Set(int x){
          return p[x]==x? x : Find_Set(p[x]);        //返回这个集合的代表集合,也就是树根  
    }

    并查集的优化见《算法导论》的用于不相交集合的数据结构

    并查集的优化:按秩合并+路径压缩

    int father[MAX];
    int rank[MAX];
    
    void Make_Set(int x)
    {
        father[x] = x;
        rank[x] = 0;
    }
    
    int Find_Set(int x)
    {
        return father[x] !=x ? father[x]=Find_Set(father[x]) : x;
    }
    
    void Union(int x, int y)
    {
        x = Find_Set(x);
        y = Find_Set(y);
        if( x == y ) return;
        if(rank[x] > rank[y])  father[y]=x;
        else
        {
            if( rank[x] == rank[y]) rank[y]++;
            father[x] = y;
        }
    }
  • 相关阅读:
    软件工程课程设计团队项目总结与项目报告
    个人总结
    团队项目UI
    黄金点
    wordcount
    小学运算
    第七周
    第八周
    第六周博客
    第五周博客
  • 原文地址:https://www.cnblogs.com/xiongqiangcs/p/3023389.html
Copyright © 2011-2022 走看看