Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 269878 Accepted Submission(s):
64147
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is
to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7),
the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer
T(1<=T<=20) which means the number of test cases. Then T lines follow,
each line starts with a number N(1<=N<=100000), then N integers
followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The
first line is "Case #:", # means the number of the test case. The second line
contains three integers, the Max Sum in the sequence, the start position of the
sub-sequence, the end position of the sub-sequence. If there are more than one
result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
题目求最大子序列和dp,刚学发现自己写很烂,和大佬有很大差距,贴一个大佬的博客,有完全解析:https://www.cnblogs.com/tommychok/p/5199668.html
自己还需要努力
代码:
#include<iostream> using namespace std; int a[100010],dp[100010];//dp[i]表示以a[i]为结尾的子序列的和的最大值 int main() { int test,k=1; cin>>test; while(test--) { int n,sum=0,b,e=1,max; cin>>n; for(int i=1;i<=n;i++) cin>>a[i]; dp[1]=a[1];//初始化dp[1]这个很重要 for(int i=2;i<=n;i++) { if(dp[i-1]<0)//以a[i-1]为结尾的子序列的和已经为负数 dp[i]=a[i];//则a[i]>dp[i-1]+a[i]所以直接把a[i]赋给dp[i] else dp[i]=dp[i-1]+a[i];//dp[i-1]为正数 } max=dp[1]; for(int i=2;i<=n;i++)//循环遍历求最大dp { if(max<dp[i]) { max=dp[i]; e=i;//终点 } } b=e; for(int i=e;i>0;i--)//从终点开始加和为max是i则为起点 { sum=sum+a[i]; if(sum==max) b=i; } cout<<"Case "<<k++<<":"<<endl<<max<<" "<<b<<" "<<e<<endl; if(test) cout<<endl; } return 0; }