zoukankan      html  css  js  c++  java
  • java+opencv实现图像灰度化

    灰度图像上每个像素的颜色值又称为灰度,指黑白图像中点的颜色深度,范围一般从0到255,白色为255,黑色为0。所谓灰度值是指色彩的浓淡程度,灰度直方图是指一幅数字图像中,对应每一个灰度值统计出具有该灰度值的象素数。

      灰度就是没有色彩,RGB色彩分量全部相等。如果是一个二值灰度图象,它的象素值只能为0或1,我们说它的灰度级为2。用个例子来说明吧:一个256级灰度的图象,如果RGB三个量相同时,如:RGB(100,100,100)就代表灰度为100,RGB(50,50,50)代表灰度为50。

      现在大部分的彩色图像都是采用RGB颜色模式,处理图像的时候,要分别对RGB三种分量进行处理,实际上RGB并不能反映图像的形态特征,只是从光学的原理上进行颜色的调配。

      图像灰度化处理可以作为图像处理的预处理步骤,为之后的图像分割、图像识别和图像分析等上层操作做准备。


      图像灰度化处理有以下几种方式:

      1. 分量法

      将彩色图像中的三分量的亮度作为三个灰度图像的灰度值,可根据应用需要选取一种灰度图像。

                      

      2. 最大值法

      将彩色图像中的三分量亮度的最大值作为灰度图的灰度值。

      

      3. 平均值法

      将彩色图像中的三分量亮度求平均得到一个灰度值。

      

      4. 加权平均法

      根据重要性及其它指标,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对蓝色敏感最低,因此,按下式对RGB三分量进行加权平均能得到较合理的灰度图像。

      

    代码实现:

    package part;
    
    import org.opencv.core.Core;
    import org.opencv.core.Mat;
    import org.opencv.imgcodecs.Imgcodecs;
    import org.opencv.imgproc.Imgproc;
    
    public class Grayscale {
        public static void main(String[] args) {
                transform();
        }
       private static void transform(){
           System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
           Mat srcImage = Imgcodecs.imread("./data/yasuo.png");
           Mat dstImage = new Mat();
           Imgproc.cvtColor(srcImage, dstImage, Imgproc.COLOR_BGR2GRAY,0);
           Imgcodecs.imwrite("./data/yasuo2.png", dstImage);
       }
    
    }
    

    效果:

    原图

    处理后

  • 相关阅读:
    F
    E
    D
    B
    A
    C
    I
    G
    F
    架构sass文件
  • 原文地址:https://www.cnblogs.com/xiuzhublog/p/12605032.html
Copyright © 2011-2022 走看看