zoukankan      html  css  js  c++  java
  • P3723 [AH2017/HNOI2017]礼物 题解

    Description

    Luogu传送门

    Solution

    不难发现,将其中一个手环中所有装饰物的亮度增加一个相同的非负整数 \(c\),可以转化成对其中一个手环增加 \(c\ (c \in Z)\)。那么最终的差异值就是:

    \[\sum\limits_{i = 1}^{n}(a_i - b_i + c)^2 \]

    把平方拆开:

    \[\sum\limits_{i = 1}^{n}a_i^2 + b_i^2 + c^2 - 2a_ib_i+ 2a_ic - 2b_ic \\ \sum\limits_{i = 1}^{n}(a_i^2 + b_i^2) + nc^2 + 2c\sum\limits_{i = 1}^{n}(a_i - b_i) - 2\sum\limits_{i = 1}^{n}a_ib_i \]

    我们发现,第一项是固定的,第二三项枚举一下 \(c\) 即可计算出答案,第四项看起来就很卷积。

    具体来说,把 \(b\) 翻转一下,即求 \(\sum\limits_{i = 1}^{n}a_ib_{n - i + 1}\),但是这玩意是个环,怎么办呢?经典破环为链。

    \(a\) 翻倍,最后从 \(n + 1 \sim 2n\) 项里枚举答案即可。

    Code

    #include <bits/stdc++.h>
    #define pi acos(-1.0)
    #define eps 1e-3
    #define ll long long
    
    using namespace std;
    
    namespace IO{
        inline int read(){
            int a = 0;
            char ch = getchar();
            while(!isdigit(ch)) ch = getchar();
            while(isdigit(ch)) x = (x << 3) + (x << 1) + ch - '0', ch = getchar();
            return x;
        }
    
        template <tbpename T> inline void write(T x){
            if(x > 9) write(x / 10);
            putchar(x % 10 + '0');
        }
    }
    using namespace IO;
    
    const int N = 4e5 + 10;
    int n, m;
    ll a1, a2, b1, b2, ans = 1e18;
    int p[N];
    
    namespace FFT{
        struct poly{
            double x, y;
            poly(double _x = 0, double _y = 0) {x = _x, y = _y;}
            friend poly operator + (poly a, poly b) {return poly(a.x + b.x, a.y + b.y);}
            friend poly operator - (poly a, poly b) {return poly(a.x - b.x, a.y - b.y);}
            friend poly operator * (poly a, poly b) {return poly(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x);}
        }a[N], b[N];
    
        int lim, len;
    
        inline void get_rev(int n){
            lim = 1, len = 0;
            while(lim <= n) lim <<= 1, ++len;
            for(int i = 0; i <= lim; ++i) p[i] = (p[i >> 1] >> 1) | ((i & 1) << (len - 1));
        }
    
        inline void fft(poly A[], int lim, int type){
            for(int i = 0; i < lim; ++i)
                if(i < p[i]) swap(A[i], A[p[i]]);
            for(int mid = 1; mid < lim; mid <<= 1){
                poly Wn(cos(pi / mid), type * sin(pi / mid));
                for(int i = 0; i < lim; i += (mid << 1)){
                    poly w(1, 0);
                    for(int j = 0; j < mid; ++j, w = w * Wn){
                        poly x = A[i + j], y = w * A[i + j + mid];
                        A[i + j] = x + y;
                        A[i + j + mid] = x - y;
                    }
                }
            }
            if(type == 1) return;
            for(int i = 0; i < lim; ++i) A[i].x = (A[i].x / lim + 0.5);
        }
    
        inline void Mul(int n, int m, poly a[], poly b[]){
            get_rev(n + m);
            fft(a, lim, 1), fft(b, lim, 1);
            for(int i = 0; i <= lim; ++i) a[i] = a[i] * b[i];
            fft(a, lim, -1);
        }
    }
    using namespace FFT;
    
    int main(){
        n = read(), m = read();
        for(int i = 0; i < n; ++i) a[i].x = read(), a1 += a[i].x, a2 += a[i].x * a[i].x;
        for(int i = n - 1; i >= 0; --i) b[i].x = read(), b1 += b[i].x, b2 += b[i].x * b[i].x;
        for(int i = 0; i < n; ++i) a[i + n].x = a[i].x;
        Mul(n << 1, n, a, b);
        for(int i = 1; i <= n; ++i)
            for(int j = -m; j <= m; ++j)
                ans = min(ans, a2 + b2 + n * j * j + 2ll * (a1 - b1) * j - 2 * (ll)a[i + n].x);
        write(ans), puts("");
        return 0;
    }
    

    \[\_EOF\_ \]

  • 相关阅读:
    采用商业智能提升企业的数字营销策略
    采用商业智能提升企业的数字营销策略
    《PostgreSQL服务器编程》一一1.3 超越简单函数
    《PostgreSQL服务器编程》一一1.3 超越简单函数
    《PostgreSQL服务器编程》一一1.3 超越简单函数
    《PostgreSQL服务器编程》一一1.3 超越简单函数
    2017 全球半导体预估跳增 11.5%,存储器最夯
    2017 全球半导体预估跳增 11.5%,存储器最夯
    如何从零学习PostgreSQL Page结构
    转成json必须是unicdoe字符
  • 原文地址:https://www.cnblogs.com/xixike/p/15633871.html
Copyright © 2011-2022 走看看