zoukankan      html  css  js  c++  java
  • 【tensorflow2.0】处理结构化数据-titanic生存预测

    1、准备数据

    import numpy as np 
    import pandas as pd 
    import matplotlib.pyplot as plt
    import tensorflow as tf 
    from tensorflow.keras import models,layers
     
    dftrain_raw = pd.read_csv('./data/titanic/train.csv')
    dftest_raw = pd.read_csv('./data/titanic/test.csv')
    dftrain_raw.head(10)

    部分数据:

    相关字段说明:

    • Survived:0代表死亡,1代表存活【y标签】
    • Pclass:乘客所持票类,有三种值(1,2,3) 【转换成onehot编码】
    • Name:乘客姓名 【舍去】
    • Sex:乘客性别 【转换成bool特征】
    • Age:乘客年龄(有缺失) 【数值特征,添加“年龄是否缺失”作为辅助特征】
    • SibSp:乘客兄弟姐妹/配偶的个数(整数值) 【数值特征】
    • Parch:乘客父母/孩子的个数(整数值)【数值特征】
    • Ticket:票号(字符串)【舍去】
    • Fare:乘客所持票的价格(浮点数,0-500不等) 【数值特征】
    • Cabin:乘客所在船舱(有缺失) 【添加“所在船舱是否缺失”作为辅助特征】
    • Embarked:乘客登船港口:S、C、Q(有缺失)【转换成onehot编码,四维度 S,C,Q,nan】

    2、探索数据

    (1)标签分布

    %matplotlib inline
    %config InlineBackend.figure_format = 'png'
    ax = dftrain_raw['Survived'].value_counts().plot(kind = 'bar',
         figsize = (12,8),fontsize=15,rot = 0)
    ax.set_ylabel('Counts',fontsize = 15)
    ax.set_xlabel('Survived',fontsize = 15)
    plt.show()

    (2) 年龄分布

    年龄分布情况
    
    %matplotlib inline
    %config InlineBackend.figure_format = 'png'
    ax = dftrain_raw['Age'].plot(kind = 'hist',bins = 20,color= 'purple',
                        figsize = (12,8),fontsize=15)
     
    ax.set_ylabel('Frequency',fontsize = 15)
    ax.set_xlabel('Age',fontsize = 15)
    plt.show()

    (3) 年龄和标签之间的相关性

    %matplotlib inline
    %config InlineBackend.figure_format = 'png'
    ax = dftrain_raw.query('Survived == 0')['Age'].plot(kind = 'density',
                          figsize = (12,8),fontsize=15)
    dftrain_raw.query('Survived == 1')['Age'].plot(kind = 'density',
                          figsize = (12,8),fontsize=15)
    ax.legend(['Survived==0','Survived==1'],fontsize = 12)
    ax.set_ylabel('Density',fontsize = 15)
    ax.set_xlabel('Age',fontsize = 15)
    plt.show()

    3、数据预处理

    (1)将Pclass转换为one-hot编码

    dfresult=pd.DataFrame()
    #将船票类型转换为one-hot编码
    dfPclass=pd.get_dummies(dftrain_raw["Pclass"])
    #设置列名
    dfPclass.columns =['Pclass_'+str(x) for x in dfPclass.columns]
    dfresult = pd.concat([dfresult,dfPclass],axis = 1)
    dfresult

    (2) 将Sex转换为One-hot编码

    #Sex
    dfSex = pd.get_dummies(dftrain_raw['Sex'])
    dfresult = pd.concat([dfresult,dfSex],axis = 1)
    dfresult

    (3) 用0填充Age列缺失值,并重新定义一列Age_null用来标记缺失值的位置

    #将缺失值用0填充
    dfresult['Age'] = dftrain_raw['Age'].fillna(0)
    #增加一列数据为Age_null,同时将不为0的数据用0,将为0的数据用1表示,也就是标记出现0的位置
    dfresult['Age_null'] = pd.isna(dftrain_raw['Age']).astype('int32')
    dfresult

    (4) 直接拼接SibSp、Parch、Fare

    dfresult['SibSp'] = dftrain_raw['SibSp']
    dfresult['Parch'] = dftrain_raw['Parch']
    dfresult['Fare'] = dftrain_raw['Fare']
    dfresult

    (5) 标记Cabin缺失的位置

    #Carbin
    dfresult['Cabin_null'] =  pd.isna(dftrain_raw['Cabin']).astype('int32')
    dfresult

    (6)将Embarked转换成one-hot编码

    #Embarked
    #需要注意的参数是dummy_na=True,将缺失值另外标记出来
    dfEmbarked = pd.get_dummies(dftrain_raw['Embarked'],dummy_na=True)
    dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]
    dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)
    dfresult

    最后,我们将上述操作封装成一个函数:

    def preprocessing(dfdata):
     
        dfresult= pd.DataFrame()
     
        #Pclass
        dfPclass = pd.get_dummies(dfdata['Pclass'])
        dfPclass.columns = ['Pclass_' +str(x) for x in dfPclass.columns ]
        dfresult = pd.concat([dfresult,dfPclass],axis = 1)
     
        #Sex
        dfSex = pd.get_dummies(dfdata['Sex'])
        dfresult = pd.concat([dfresult,dfSex],axis = 1)
     
        #Age
        dfresult['Age'] = dfdata['Age'].fillna(0)
        dfresult['Age_null'] = pd.isna(dfdata['Age']).astype('int32')
     
        #SibSp,Parch,Fare
        dfresult['SibSp'] = dfdata['SibSp']
        dfresult['Parch'] = dfdata['Parch']
        dfresult['Fare'] = dfdata['Fare']
     
        #Carbin
        dfresult['Cabin_null'] =  pd.isna(dfdata['Cabin']).astype('int32')
     
        #Embarked
        dfEmbarked = pd.get_dummies(dfdata['Embarked'],dummy_na=True)
        dfEmbarked.columns = ['Embarked_' + str(x) for x in dfEmbarked.columns]
        dfresult = pd.concat([dfresult,dfEmbarked],axis = 1)
     
        return(dfresult)

    然后进行数据预处理:

    x_train = preprocessing(dftrain_raw)
    y_train = dftrain_raw['Survived'].values
     
    x_test = preprocessing(dftest_raw)
    y_test = dftest_raw['Survived'].values
     
    print("x_train.shape =", x_train.shape )
    print("x_test.shape =", x_test.shape )

    x_train.shape = (712, 15)

    x_test.shape = (179, 15)

    3、使用tensorflow定义模型

    使用Keras接口有以下3种方式构建模型:使用Sequential按层顺序构建模型,使用函数式API构建任意结构模型,继承Model基类构建自定义模型。此处选择使用最简单的Sequential,按层顺序模型。

    tf.keras.backend.clear_session()
     
    model = models.Sequential()
    model.add(layers.Dense(20,activation = 'relu',input_shape=(15,)))
    model.add(layers.Dense(10,activation = 'relu' ))
    model.add(layers.Dense(1,activation = 'sigmoid' ))
     
    model.summary()

    4、训练模型

    训练模型通常有3种方法,内置fit方法,内置train_on_batch方法,以及自定义训练循环。此处我们选择最常用也最简单的内置fit方法

    # 二分类问题选择二元交叉熵损失函数
    model.compile(optimizer='adam',
                loss='binary_crossentropy',
                metrics=['AUC'])
     
    history = model.fit(x_train,y_train,
                        batch_size= 64,
                        epochs= 30,
                        validation_split=0.2 #分割一部分训练数据用于验证
                       )

    结果:

    Epoch 1/30
    WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/resource_variable_ops.py:1817: calling BaseResourceVariable.__init__ (from tensorflow.python.ops.resource_variable_ops) with constraint is deprecated and will be removed in a future version.
    Instructions for updating:
    If using Keras pass *_constraint arguments to layers.
    9/9 [==============================] - 0s 30ms/step - loss: 4.3524 - auc: 0.4888 - val_loss: 3.0274 - val_auc: 0.5492
    Epoch 2/30
    9/9 [==============================] - 0s 6ms/step - loss: 2.7962 - auc: 0.4710 - val_loss: 1.8653 - val_auc: 0.4599
    Epoch 3/30
    9/9 [==============================] - 0s 6ms/step - loss: 1.6765 - auc: 0.4040 - val_loss: 1.2673 - val_auc: 0.4067
    Epoch 4/30
    9/9 [==============================] - 0s 7ms/step - loss: 1.1195 - auc: 0.3799 - val_loss: 0.9501 - val_auc: 0.4006
    Epoch 5/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.8156 - auc: 0.4874 - val_loss: 0.7090 - val_auc: 0.5514
    Epoch 6/30
    9/9 [==============================] - 0s 5ms/step - loss: 0.6355 - auc: 0.6611 - val_loss: 0.6550 - val_auc: 0.6502
    Epoch 7/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.6308 - auc: 0.7169 - val_loss: 0.6502 - val_auc: 0.6546
    Epoch 8/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.6088 - auc: 0.7156 - val_loss: 0.6463 - val_auc: 0.6610
    Epoch 9/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.6066 - auc: 0.7163 - val_loss: 0.6372 - val_auc: 0.6644
    Epoch 10/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5964 - auc: 0.7253 - val_loss: 0.6283 - val_auc: 0.6646
    Epoch 11/30
    9/9 [==============================] - 0s 7ms/step - loss: 0.5876 - auc: 0.7326 - val_loss: 0.6253 - val_auc: 0.6717
    Epoch 12/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5827 - auc: 0.7409 - val_loss: 0.6195 - val_auc: 0.6708
    Epoch 13/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5769 - auc: 0.7489 - val_loss: 0.6170 - val_auc: 0.6762
    Epoch 14/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5719 - auc: 0.7555 - val_loss: 0.6156 - val_auc: 0.6803
    Epoch 15/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5662 - auc: 0.7629 - val_loss: 0.6119 - val_auc: 0.6826
    Epoch 16/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5627 - auc: 0.7694 - val_loss: 0.6107 - val_auc: 0.6892
    Epoch 17/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5586 - auc: 0.7753 - val_loss: 0.6084 - val_auc: 0.6927
    Epoch 18/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5539 - auc: 0.7837 - val_loss: 0.6051 - val_auc: 0.6983
    Epoch 19/30
    9/9 [==============================] - 0s 7ms/step - loss: 0.5479 - auc: 0.7930 - val_loss: 0.6011 - val_auc: 0.7056
    Epoch 20/30
    9/9 [==============================] - 0s 9ms/step - loss: 0.5451 - auc: 0.7986 - val_loss: 0.5996 - val_auc: 0.7128
    Epoch 21/30
    9/9 [==============================] - 0s 7ms/step - loss: 0.5406 - auc: 0.8047 - val_loss: 0.5962 - val_auc: 0.7192
    Epoch 22/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5357 - auc: 0.8123 - val_loss: 0.5948 - val_auc: 0.7212
    Epoch 23/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5295 - auc: 0.8181 - val_loss: 0.5928 - val_auc: 0.7267
    Epoch 24/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5275 - auc: 0.8223 - val_loss: 0.5910 - val_auc: 0.7296
    Epoch 25/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5263 - auc: 0.8227 - val_loss: 0.5884 - val_auc: 0.7325
    Epoch 26/30
    9/9 [==============================] - 0s 7ms/step - loss: 0.5199 - auc: 0.8313 - val_loss: 0.5860 - val_auc: 0.7356
    Epoch 27/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5145 - auc: 0.8356 - val_loss: 0.5835 - val_auc: 0.7386
    Epoch 28/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5138 - auc: 0.8383 - val_loss: 0.5829 - val_auc: 0.7402
    Epoch 29/30
    9/9 [==============================] - 0s 7ms/step - loss: 0.5092 - auc: 0.8405 - val_loss: 0.5806 - val_auc: 0.7416
    Epoch 30/30
    9/9 [==============================] - 0s 6ms/step - loss: 0.5082 - auc: 0.8394 - val_loss: 0.5792 - val_auc: 0.7424

    5、评估模型

    我们首先评估一下模型在训练集和验证集上的效果。

    %matplotlib inline
    %config InlineBackend.figure_format = 'svg'
     
    import matplotlib.pyplot as plt
     
    def plot_metric(history, metric):
        train_metrics = history.history[metric]
        val_metrics = history.history['val_'+metric]
        epochs = range(1, len(train_metrics) + 1)
        plt.plot(epochs, train_metrics, 'bo--')
        plt.plot(epochs, val_metrics, 'ro-')
        plt.title('Training and validation '+ metric)
        plt.xlabel("Epochs")
        plt.ylabel(metric)
        plt.legend(["train_"+metric, 'val_'+metric])
        plt.show()
    plot_metric(history,"loss")
    plot_metric(history,"auc")

    然后看在在测试集上的效果:

    model.evaluate(x = x_test,y = y_test)

    结果:

    6/6 [==============================] - 0s 2ms/step - loss: 0.5286 - auc: 0.7869
    [0.5286471247673035, 0.786877453327179]

    6、使用模型

    (1)预测概率

    model.predict(x_test[0:10])

    结果:

    array([[0.34822357],
           [0.4793241 ],
           [0.43986577],
           [0.7916608 ],
           [0.50268507],
           [0.536609  ],
           [0.29079646],
           [0.6085641 ],
           [0.34384924],
           [0.17756936]], dtype=float32)

    (2)预测类别

    model.predict_classes(x_test[0:10])

    结果:

    WARNING:tensorflow:From <ipython-input-36-a161a0a6b51e>:1: Sequential.predict_classes (from tensorflow.python.keras.engine.sequential) is deprecated and will be removed after 2021-01-01.
    Instructions for updating:
    Please use instead:* `np.argmax(model.predict(x), axis=-1)`,   if your model does multi-class classification   (e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) > 0.5).astype("int32")`,   if your model does binary classification   (e.g. if it uses a `sigmoid` last-layer activation).
    array([[0],
           [0],
           [0],
           [1],
           [1],
           [1],
           [0],
           [1],
           [0],
           [0]], dtype=int32)

    7、保存模型

    可以使用Keras方式保存模型,也可以使用TensorFlow原生方式保存。前者仅仅适合使用Python环境恢复模型,后者则可以跨平台进行模型部署。推荐使用后一种方式进行保存

    1)使用keras方式保存

    # 保存模型结构及权重
    model.save('./data/keras_model.h5')  
    del model  #删除现有模型

    (1)加载模型

    # identical to the previous one
    model = models.load_model('./data/keras_model.h5')
    model.evaluate(x_test,y_test)
    WARNING:tensorflow:Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.
    6/6 [==============================] - 0s 2ms/step - loss: 0.5286 - auc_1: 0.7869
    [0.5286471247673035, 0.786877453327179]

    (2)保存模型结构和恢复模型结构

    # 保存模型结构
    json_str = model.to_json()
    # 恢复模型结构
    model_json = models.model_from_json(json_str)

    (3)保存模型权重

    # 保存模型权重
    model.save_weights('./data/keras_model_weight.h5')

    (4)恢复模型结构并加载权重

    # 恢复模型结构
    model_json = models.model_from_json(json_str)
    model_json.compile(
            optimizer='adam',
            loss='binary_crossentropy',
            metrics=['AUC']
        )
     
    # 加载权重
    model_json.load_weights('./data/keras_model_weight.h5')
    model_json.evaluate(x_test,y_test)
    6/6 [==============================] - 0s 3ms/step - loss: 0.5217 - auc: 0.8123
    [0.521678626537323, 0.8122605681419373]

    2)tensorflow原生方式

    # 保存权重,该方式仅仅保存权重张量
    model.save_weights('./data/tf_model_weights.ckpt',save_format = "tf")
    # 保存模型结构与模型参数到文件,该方式保存的模型具有跨平台性便于部署
     
    model.save('./data/tf_model_savedmodel', save_format="tf")
    print('export saved model.')
     
    model_loaded = tf.keras.models.load_model('./data/tf_model_savedmodel')
    model_loaded.evaluate(x_test,y_test)
    INFO:tensorflow:Assets written to: ./data/tf_model_savedmodel/assets
    export saved model.
    6/6 [==============================] - 0s 2ms/step - loss: 0.5286 - auc_1: 0.7869
    [0.5286471247673035, 0.786877453327179]

    参考:

    开源电子书地址:https://lyhue1991.github.io/eat_tensorflow2_in_30_days/

    GitHub 项目地址:https://github.com/lyhue1991/eat_tensorflow2_in_30_days

  • 相关阅读:
    爬弹幕
    写了这么多行就给我30,呜呜呜
    ticket
    yield求平均数
    协程原理
    爬取一类字二类字的信息和笔顺gif图片
    关于CRF的相关阅读
    embedding size与vocabulary size之间的关系: e = v**0.25
    pandas多个值取数
    转 pandas pivot
  • 原文地址:https://www.cnblogs.com/xiximayou/p/12638196.html
Copyright © 2011-2022 走看看