zoukankan      html  css  js  c++  java
  • bert训练代码

    from torch.optim import Adam
    from torch.utils.data import DataLoader
    
    from dataset.wiki_dataset import BERTDataset
    from models.bert_model import *
    import tqdm
    import pandas as pd
    import numpy as np
    import os
    
    
    config = {}
    #训练集 config[
    "train_corpus_path"] = "./pretraining_data/wiki_dataset/train_wiki.txt" #测试集
    config[
    "test_corpus_path"] = "./pretraining_data/wiki_dataset/test_wiki.txt" #字转换为idx
    config[
    "word2idx_path"] = "./pretraining_data/wiki_dataset/bert_word2idx_extend.json" #模型存储位置
    config[
    "output_path"] = "./output_wiki_bert" #batchsize大小
    config[
    "batch_size"] = 1
    #最大句子长度 config["max_seq_len"] = 200
    #总共的字数 config["vocab_size"] = 32162 #学习率
    config[
    "lr"] = 2e-6 config["num_workers"] = 0 class Pretrainer: def __init__(self, bert_model, vocab_size, max_seq_len, batch_size, lr, with_cuda=True, ): # 词量, 注意在这里实际字(词)汇量 = vocab_size - 20, # 因为前20个token用来做一些特殊功能, 如padding等等 self.vocab_size = vocab_size self.batch_size = batch_size # 学习率 self.lr = lr # 是否使用GPU cuda_condition = torch.cuda.is_available() and with_cuda self.device = torch.device("cuda:0" if cuda_condition else "cpu") # 限定的单句最大长度 self.max_seq_len = max_seq_len # 初始化超参数的配置 bertconfig = BertConfig(vocab_size=config["vocab_size"]) # 初始化bert模型 self.bert_model = bert_model(config=bertconfig) self.bert_model.to(self.device) # 初始化训练数据集 train_dataset = BERTDataset(corpus_path=config["train_corpus_path"], word2idx_path=config["word2idx_path"], seq_len=self.max_seq_len, hidden_dim=bertconfig.hidden_size, on_memory=False, ) # 初始化训练dataloader self.train_dataloader = DataLoader(train_dataset, batch_size=self.batch_size, num_workers=config["num_workers"], collate_fn=lambda x: x) # 初始化测试数据集 test_dataset = BERTDataset(corpus_path=config["test_corpus_path"], word2idx_path=config["word2idx_path"], seq_len=self.max_seq_len, hidden_dim=bertconfig.hidden_size, on_memory=True, ) # 初始化测试dataloader self.test_dataloader = DataLoader(test_dataset, batch_size=self.batch_size, num_workers=config["num_workers"], collate_fn=lambda x: x) # 初始化positional encoding self.positional_enc = self.init_positional_encoding(hidden_dim=bertconfig.hidden_size, max_seq_len=self.max_seq_len) # 拓展positional encoding的维度为[1, max_seq_len, hidden_size] self.positional_enc = torch.unsqueeze(self.positional_enc, dim=0) # 列举需要优化的参数并传入优化器 optim_parameters = list(self.bert_model.parameters()) self.optimizer = torch.optim.Adam(optim_parameters, lr=self.lr) print("Total Parameters:", sum([p.nelement() for p in self.bert_model.parameters()])) def init_positional_encoding(self, hidden_dim, max_seq_len): position_enc = np.array([ [pos / np.power(10000, 2 * i / hidden_dim) for i in range(hidden_dim)] if pos != 0 else np.zeros(hidden_dim) for pos in range(max_seq_len)]) position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1 denominator = np.sqrt(np.sum(position_enc**2, axis=1, keepdims=True)) position_enc = position_enc / (denominator + 1e-8) position_enc = torch.from_numpy(position_enc).type(torch.FloatTensor) return position_enc def test(self, epoch, df_path="./output_wiki_bert/df_log.pickle"): self.bert_model.eval() with torch.no_grad(): return self.iteration(epoch, self.test_dataloader, train=False, df_path=df_path) def load_model(self, model, dir_path="./output"): # 加载模型 checkpoint_dir = self.find_most_recent_state_dict(dir_path) checkpoint = torch.load(checkpoint_dir) model.load_state_dict(checkpoint["model_state_dict"], strict=False) torch.cuda.empty_cache() model.to(self.device) print("{} loaded for training!".format(checkpoint_dir)) def train(self, epoch, df_path="./output_wiki_bert/df_log.pickle"): self.bert_model.train() self.iteration(epoch, self.train_dataloader, train=True, df_path=df_path) def compute_loss(self, predictions, labels, num_class=2, ignore_index=None): if ignore_index is None: loss_func = CrossEntropyLoss() else: loss_func = CrossEntropyLoss(ignore_index=ignore_index) return loss_func(predictions.view(-1, num_class), labels.view(-1)) def get_mlm_accuracy(self, predictions, labels): predictions = torch.argmax(predictions, dim=-1, keepdim=False) mask = (labels > 0).to(self.device) mlm_accuracy = torch.sum((predictions == labels) * mask).float() mlm_accuracy /= (torch.sum(mask).float() + 1e-8) return mlm_accuracy.item() def padding(self, output_dic_lis): bert_input = [i["bert_input"] for i in output_dic_lis] bert_label = [i["bert_label"] for i in output_dic_lis] segment_label = [i["segment_label"] for i in output_dic_lis] bert_input = torch.nn.utils.rnn.pad_sequence(bert_input, batch_first=True) bert_label = torch.nn.utils.rnn.pad_sequence(bert_label, batch_first=True) segment_label = torch.nn.utils.rnn.pad_sequence(segment_label, batch_first=True) is_next = torch.cat([i["is_next"] for i in output_dic_lis]) return {"bert_input": bert_input, "bert_label": bert_label, "segment_label": segment_label, "is_next": is_next} def iteration(self, epoch, data_loader, train=True, df_path="./output_wiki_bert/df_log.pickle"): if not os.path.isfile(df_path) and epoch != 0: raise RuntimeError("log DataFrame path not found and can't create a new one because we're not training from scratch!") if not os.path.isfile(df_path) and epoch == 0: df = pd.DataFrame(columns=["epoch", "train_next_sen_loss", "train_mlm_loss", "train_next_sen_acc", "train_mlm_acc", "test_next_sen_loss", "test_mlm_loss", "test_next_sen_acc", "test_mlm_acc" ]) df.to_pickle(df_path) print("log DataFrame created!") str_code = "train" if train else "test" # Setting the tqdm progress bar data_iter = tqdm.tqdm(enumerate(data_loader), desc="EP_%s:%d" % (str_code, epoch), total=len(data_loader), bar_format="{l_bar}{r_bar}") total_next_sen_loss = 0 total_mlm_loss = 0 total_next_sen_acc = 0 total_mlm_acc = 0 total_element = 0 for i, data in data_iter: # print('IDX of data_iter:', i) data = self.padding(data) # 0. batch_data will be sent into the device(GPU or cpu) data = {key: value.to(self.device) for key, value in data.items()} positional_enc = self.positional_enc[:, :data["bert_input"].size()[-1], :].to(self.device) # 1. forward the next_sentence_prediction and masked_lm model mlm_preds, next_sen_preds = self.bert_model.forward(input_ids=data["bert_input"], positional_enc=positional_enc, token_type_ids=data["segment_label"]) mlm_acc = self.get_mlm_accuracy(mlm_preds, data["bert_label"]) next_sen_acc = next_sen_preds.argmax(dim=-1, keepdim=False).eq(data["is_next"]).sum().item() mlm_loss = self.compute_loss(mlm_preds, data["bert_label"], self.vocab_size, ignore_index=0) next_sen_loss = self.compute_loss(next_sen_preds, data["is_next"]) loss = mlm_loss + next_sen_loss # 3. backward and optimization only in train if train: self.optimizer.zero_grad() loss.backward() # for param in self.model.parameters(): # print(param.grad.data.sum()) self.optimizer.step() total_next_sen_loss += next_sen_loss.item() total_mlm_loss += mlm_loss.item() total_next_sen_acc += next_sen_acc total_element += data["is_next"].nelement() total_mlm_acc += mlm_acc if train: log_dic = { "epoch": epoch, "train_next_sen_loss": total_next_sen_loss / (i + 1), "train_mlm_loss": total_mlm_loss / (i + 1), "train_next_sen_acc": total_next_sen_acc / total_element, "train_mlm_acc": total_mlm_acc / (i + 1), "test_next_sen_loss": 0, "test_mlm_loss": 0, "test_next_sen_acc": 0, "test_mlm_acc": 0 } else: log_dic = { "epoch": epoch, "test_next_sen_loss": total_next_sen_loss / (i + 1), "test_mlm_loss": total_mlm_loss / (i + 1), "test_next_sen_acc": total_next_sen_acc / total_element, "test_mlm_acc": total_mlm_acc / (i + 1), "train_next_sen_loss": 0, "train_mlm_loss": 0, "train_next_sen_acc": 0, "train_mlm_acc": 0 } if i % 10 == 0: data_iter.write(str({k: v for k, v in log_dic.items() if v != 0 and k != "epoch"})) if train: df = pd.read_pickle(df_path) df = df.append([log_dic]) df.reset_index(inplace=True, drop=True) df.to_pickle(df_path) else: log_dic = {k: v for k, v in log_dic.items() if v != 0 and k != "epoch"} df = pd.read_pickle(df_path) df.reset_index(inplace=True, drop=True) for k, v in log_dic.items(): df.at[epoch, k] = v df.to_pickle(df_path) return float(log_dic["test_next_sen_loss"])+float(log_dic["test_mlm_loss"]) def find_most_recent_state_dict(self, dir_path): dic_lis = [i for i in os.listdir(dir_path)] if len(dic_lis) == 0: raise FileNotFoundError("can not find any state dict in {}!".format(dir_path)) dic_lis = [i for i in dic_lis if "model" in i] dic_lis = sorted(dic_lis, key=lambda k: int(k.split(".")[-1])) return dir_path + "/" + dic_lis[-1] def save_state_dict(self, model, epoch, dir_path="./output", file_path="bert.model"): if not os.path.exists(dir_path): os.mkdir(dir_path) save_path = dir_path+ "/" + file_path + ".epoch.{}".format(str(epoch)) model.to("cpu") torch.save({"model_state_dict": model.state_dict()}, save_path) print("{} saved!".format(save_path)) model.to(self.device) if __name__ == '__main__': def init_trainer(dynamic_lr, load_model=False): trainer = Pretrainer(BertForPreTraining, vocab_size=config["vocab_size"], max_seq_len=config["max_seq_len"], batch_size=config["batch_size"], lr=dynamic_lr, with_cuda=True) if load_model: trainer.load_model(trainer.bert_model, dir_path=config["output_path"]) return trainer start_epoch = 3 train_epoches = 1 trainer = init_trainer(config["lr"], load_model=True) # if train from scratch all_loss = [] threshold = 0 patient = 10 best_f1 = 0 dynamic_lr = config["lr"] for epoch in range(start_epoch, start_epoch + train_epoches): print("train with learning rate {}".format(str(dynamic_lr))) trainer.train(epoch) trainer.save_state_dict(trainer.bert_model, epoch, dir_path=config["output_path"], file_path="bert.model") trainer.test(epoch)
  • 相关阅读:
    Python 自学笔记(二)
    Python 自学笔记(一)
    java.net.MalformedURLException: unknown protocol: 异常
    选择排序精简理解
    JAVA基于File的基本的增删改查
    Oracle常用操作表结构的语句
    jQuery
    基于jquery的ajax方法封装
    javascript运算符——条件、逗号、赋值、()和void运算符 (转载)
    javascript 闭包
  • 原文地址:https://www.cnblogs.com/xiximayou/p/13354622.html
Copyright © 2011-2022 走看看