zoukankan      html  css  js  c++  java
  • 【python刷题】广度优先搜索(BFS)

    一般来说,BFS使用的数据结构是队列。

    BFS模板

    from collections import deque
    def BFS(start, target):
        q = deque() # 核心数据结构
        visited = set() # 避免走回头路
        q.append(start) # 将起点加入到队列
        visited.add(start)
        step = 0 # 记录扩散的步数
        while q is not None:
            s = len(q)
            for i in range(s):
                cur = q.popleft() # 删除队列首元素
                if cur == target:
                    return step
                for x in adj[cur]: # adj的键为cur,值是一个列表,表示与cur相邻的节点
                    if x not in visited:
                        q.append(x)
                        visited.add(x)
            step += 1
    

    leetcode 111 二叉树的最小深度

    class Solution:
        def minDepth(self, root: TreeNode) -> int:
            if  not root:
                return 0
            from collections import deque
            queue = deque()
            queue.append(root)
            depth = 0
            while queue:
                depth = depth + 1
                l = len(queue)
                for i in range(l):
                    t = queue.popleft()
                    if not t.left and not t.right:
                        return depth
                    if t.left:
                        queue.append(t.left)
                    if t.right:
                        queue.append(t.right)
    

    递归方法

    class Solution:
        def minDepth(self, root: TreeNode) -> int:
            if not root: return 0
            if not root.left: return self.minDepth(root.right) + 1
            if not root.right: return self.minDepth(root.left) + 1
            return min(self.minDepth(root.left), self.minDepth(root.right)) + 1
    

    leetcode 752 打开转盘锁

    class Solution:
        import copy
        def openLock(self, deadends: List[str], target: str) -> int:
            from collections import deque
            target = list(map(lambda x: int(x), list(target)))
            deadends = [list(map(lambda x: int(x), list(deadend))) for deadend in deadends]
            queue = deque()
            queue.append([0,0,0,0])
            visited = []
            visited.append([0,0,0,0])
            step = 0
            while len(queue) != 0:
                l = len(queue)
                for i in range(l):
                    cur = queue.popleft()
                    if cur in deadends:
                        continue
                    if cur == list(target):
                        return step
                    for j in range(4):
                        up = self.plusOne(cur, j)
                        down = self.subOne(cur, j)
                        if up not in visited:
                            queue.append(up)
                            visited.append(up)
                        if down not in visited:
                            queue.append(down)
                            visited.append(down)
                step += 1
            return -1
    
                
        def plusOne(self, s, i):
            s = copy.deepcopy(s)
            if s[i] == 9:
                s[i] = 0
            else:
                s[i] += 1
            return s
        def subOne(self, s, i):
            s = copy.deepcopy(s)
            if s[i] == 0:
                s[i] = 9
            else:
                s[i] -= 1
            return s
    

    我们进行优化,使用双向BFS,使用这种优化方法我们需要知道最终的终点在哪。

    class Solution:
        import copy
        def openLock(self, deadends: List[str], target: str) -> int:
            target = list(map(lambda x: int(x), list(target)))
            deadends = [list(map(lambda x: int(x), list(deadend))) for deadend in deadends]
            q1 = []
            q2 = []
            q1.append([0,0,0,0])
            q2.append(target)
            visited = []
            step = 0
            while len(q1) != 0 and len(q2) != 0:
                tmp = []
                for cur in q1: # 将q1中的元素进行扩散
                    if cur in deadends:
                        continue
                    if cur in q2:
                        return step
                    visited.append(cur) 
                    # 将一个节点的未遍历邻居加入到visited
                    for j in range(4):
                        up = self.plusOne(cur, j)
                        down = self.subOne(cur, j)
                        if up not in visited:
                            tmp.append(up)
                        if down not in visited:
                            tmp.append(down)
                step += 1
                q1 = q2 # 这里交换q1和q2,下一轮扩散的是q2
                q2 = tmp
            return -1
    
                
        def plusOne(self, s, i):
            s = copy.deepcopy(s)
            if s[i] == 9:
                s[i] = 0
            else:
                s[i] += 1
            return s
        def subOne(self, s, i):
            s = copy.deepcopy(s)
            if s[i] == 0:
                s[i] = 9
            else:
                s[i] -= 1
            return s
    
  • 相关阅读:
    基于Simple Image Statistics(简单图像统计,SIS)的图像二值化算法。
    【Oracle】-【LRU和DBWR】-LRU算法与DBWR中的应用
    java系列之 原生数据类型
    mmc生产任务分配问题续
    中小型数据库 RMAN CATALOG 备份恢复方案(一)
    正则表达式速查表
    IE中div被视频遮住的解决方法
    IIS发布以后,handle文件找不到,404错误
    cocos 主循环
    SRM 449 DIV 1 总结(550p标记下,下次做)
  • 原文地址:https://www.cnblogs.com/xiximayou/p/14366745.html
Copyright © 2011-2022 走看看