有所更改,参数不求完备,但求实用。源码参考D:sourceopencv-3.4.9samplescppcloning_demo.cpp
图片下载地址 https://github.com/opencv/opencv_extra
此案例图片具体位置 opencv_extra-master estdatacvcloning。把cloning文件夹放到自己的工程目录下。
【知识点1】
把一幅图无缝融合到另一幅图里,主要是seamlessClone() 的使用。
seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p, OutputArray blend, int flags);
注意需要三幅图合为一幅图,src与mask抠图(逻辑与,尺寸一致),把抠出的图融合到dst中的p位置处(抠出的图尺寸≤dst图)。p位置也是抠出的图的中心。
3种融合模式flags:NORMAL_CLONE = 1,MIXED_CLONE = 2,MONOCHROME_TRANSFER = 3
#include<opencv2opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/Normal_Cloning/"; //可更换Mixed_Cloning,Monochrome_Transfer目录 string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "destination1.png"); string original_path3 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat destination = imread(original_path2, IMREAD_COLOR); Mat mask = imread(original_path3, IMREAD_COLOR); Mat result; Point p; p.x = destination.size().width / 2; p.y = destination.size().height / 2; seamlessClone(source, destination, mask, p, result, NORMAL_CLONE); //可更换MIXED_CLONE,MONOCHROME_TRANSFER imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【知识点2】
对感兴趣区域进行颜色调整。如下图,花朵更鲜艳。主要是colorChange()函数的使用。
#include<opencv2opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/color_change/"; string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat mask = imread(original_path2, IMREAD_COLOR); Mat result; colorChange(source, mask, result, 1.5, .5, .5); //mask定位source中的roi区域,调整该区域颜色r,g,b imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【知识点3】
消除高亮区域,illuminationChange()函数的使用。alpha,beta两个参数共同决定消除高光后图像的模糊程度(范围0~2,0比较清晰,2比较模糊)
#include<opencv2opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/Illumination_Change/"; string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat mask = imread(original_path2, IMREAD_COLOR); Mat result; illuminationChange(source, mask, result, 0.2f, 0.4f); //消除source中mask锁定的高亮区域,后两个参数0-2调整 imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【知识点4】
纹理扁平化,边缘检测器选取的边缘越少(选择性越强),边缘映射就越稀疏,扁平化效果就越明显。textureFlattening()函数的使用。
#include<opencv2opencv.hpp> #include<iostream> using namespace cv; using namespace std; int main() { string folder = "cloning/Texture_Flattening/"; string original_path1 = samples::findFile(folder + "source1.png"); string original_path2 = samples::findFile(folder + "mask.png"); Mat source = imread(original_path1, IMREAD_COLOR); Mat mask = imread(original_path2, IMREAD_COLOR); Mat result; textureFlattening(source, mask, result, 30, 45, 3); //对mask锁定的source中的区域进行纹理扁平化,低阈值,高阈值,核尺寸 imshow("Output", result); imwrite("cloned.png", result); waitKey(0); return 0; }
【原理参考】