zoukankan      html  css  js  c++  java
  • 梯度下降法优化线性回归算法参数

    参数优化方案

    w参数的调整方向和幅度?

    梯度下降法指导w的调参

     比如图中,w1往小调整,w0往大调整,才能使得误差函数向极小值方向走

    上图可以拆解为两个图,一个是w0与J的图,一个是w1与J的图。以w0与J的图举例说明

    由于误差函数是凹函数,如下图,

    在极小值左侧,导数小于0;

    在极小值右侧,导数大于0 

    如果导数小于0,w点应该往大调整;

    如果导数大于0,w点应该往小调整

    w0调整的公式为:

     

    阿尔法是学习率

    导数的正负决定了w参数的调整方向

    阿尔法决定了w调整的步长

    阿尔法是调参工程师需要调整的

    w1 调整的公式为  

    为什么叫梯度下降法?

    梯度总是指向函数变大的方向,而w参数调整的方向是与梯度的方向相反的,所以叫梯度下降法

    几个问题来更深入的理解

    1、可否等价于这样?

    假设阿尔法等于10 ,刚开始w偏大,往小调。调完又偏小,又往大调到原来位置,来回震荡,直到大于迭代次数终止,但是这样调整,不能满足需要调整到误差最小的位置

    为什么调整 阿尔法乘以导数呢

     导数1 的绝对值 大于 导数2 的绝对值

    2、如果阿尔法调的很大好不好?

    不好,盘旋上升

    3、误差函数能不能不平方而取绝对值?

    1点45分 

  • 相关阅读:
    SQLAlchemy Table(表)类方式
    MySQL简单入门
    第四次作业
    第三次随笔
    第二次随笔
    第一次随笔
    第四次随笔
    第三次作业
    第二次随笔
    第一次随笔
  • 原文地址:https://www.cnblogs.com/xiyouzhi/p/12852075.html
Copyright © 2011-2022 走看看