zoukankan      html  css  js  c++  java
  • Python笔记 #16# Pandas: Operations

    10 Minutes to pandas

    #Stats
    # shift 这玩意儿有啥用???
    s = pd.Series([1,5,np.nan], index=dates).shift(0)
    # s1 = pd.Series([1,5,np.nan], index=dates).shift(1)
    # s2 = pd.Series([1,5,np.nan], index=dates).shift(2)
    # print(s)
    # print(s1)
    # print(s2)
    # 2018-01-16    1.0
    # 2018-01-17    5.0
    # 2018-01-18    NaN
    # Freq: D, dtype: float64
    # 2018-01-16    NaN
    # 2018-01-17    1.0
    # 2018-01-18    5.0
    # Freq: D, dtype: float64
    # 2018-01-16    NaN
    # 2018-01-17    NaN
    # 2018-01-18    1.0
    # Freq: D, dtype: float64
    
    # print(df)
    # print(df.sub(s, axis='index')) # "Wise subtraction"
    #                    A         B         C         D
    # 2018-01-16 -1.809723  0.342129  2.048727  0.995959
    # 2018-01-17  0.871955  1.960730  0.368855  0.459528
    # 2018-01-18 -0.483717  0.031247  0.619609 -0.712104
    #                    A         B         C         D
    # 2018-01-16 -2.809723 -0.657871  1.048727 -0.004041
    # 2018-01-17 -4.128045 -3.039270 -4.631145 -4.540472
    # 2018-01-18       NaN       NaN       NaN       NaN

     /

    # Applying functions to the data
    # print(df)
    # print(df.apply(np.cumsum)) # 应用 numpy 的函数 cumsum 对每列累计求和
    #                    A         B         C         D
    # 2018-01-16  1.516139  0.501701  0.624571 -1.270804
    # 2018-01-17 -0.223673 -0.092153  0.782620 -2.073206
    # 2018-01-18  0.844318 -1.180269  0.994821 -1.372318
    #                    A         B         C         D
    # 2018-01-16  1.516139  0.501701  0.624571 -1.270804
    # 2018-01-17  1.292466  0.409548  1.407191 -3.344010
    # 2018-01-18  2.136784 -0.770721  2.402013 -4.716328

    /

    # Histogramming(直方图化) ps:就是把每个值出现的次数统计出来
    # s = pd.Series(np.random.randint(0, 7, size=10))
    # print(s)
    # print(s.value_counts())
    # 0    1
    # 1    4
    # 2    6
    # 3    2
    # 4    4
    # 5    2
    # 6    3
    # 7    2
    # 8    1
    # 9    5
    # dtype: int32
    # 2    3
    # 4    2
    # 1    2
    # 6    1
    # 5    1
    # 3    1
    # dtype: int64

    /

    # String Methods
    # s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
    # print(s.str.lower())
    # 0       a
    # 1       b
    # 2       c
    # 3    aaba
    # 4    baca
    # 5     NaN
    # 6    caba
    # 7     dog
    # 8     cat
    # dtype: object
  • 相关阅读:
    Java Web三层架构设计深思
    编译C源码软件需要的工具
    Hibernate之表间关系
    CSS之颜色字体
    主流的微服务框架
    CSS布局思考
    Android创建新项目及开发
    Google工程师解析Android系统架构
    java多线程实用操作
    Spring IOC/DI/注解
  • 原文地址:https://www.cnblogs.com/xkxf/p/8338215.html
Copyright © 2011-2022 走看看