题目描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
代码:
// 考虑动态规划.
// 对于某个元素a[i],它要么被放入到前面,要么自己单独开始一个序列.
// 区分在于前面的元素能不能帮助它增大.
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int max_sum=array[0], current_sum=array[0];
for (size_t i = 1; i < array.size(); i++) {
current_sum = (current_sum > 0)? current_sum+array[i] : array[i];
max_sum = (current_sum > max_sum)? current_sum : max_sum;
}
return max_sum;
}
};