这篇文章的motivation是when two fact instances from two relations share the same value for a shared argument type, then the validity of both facts should be increased. Conversely, we also hypothesize that an incorrect fact instance will tend to match a shared argument with other facts far less frequently.
他下面举了一个例子:
t1: acted-in<Psycho, Anthony Perkins>
t2: *acted-in<Walt Disney Pictures, Johnny Depp>
t3: director-of<Psycho, Alfred Hitchcock>
t4: is-actor<Anthony Perkins>
因为t3中提到Psycho是电影,所以t1的证据被加强了,同时t4提到Anthony Perkins是一个演员,因此t1的证据也被加强了,另一方面,t1也加强了t3和t4的证据。相比之下t2是错误的,所以提到的fact就要少了。所以这个过程可以由Random Walk进行建模。真是一个好idea!!
后面的方法就是改改PageRank,实验只做了Movie领域的,感觉有点少,但是idea不错