Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
2 / 1 3 Input: [2,1,3] Output: true
Example 2:
5 / 1 4 / 3 6 Input: [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.
# Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def isValidBST(self, root: TreeNode) -> bool: import sys # max_val = sys.maxsize # min_val = -sys.maxsize - 1 max_val = float('inf') min_val = -float('inf') return self.helper(root, min_val, max_val) def helper(self, root, min_val, max_val): if root is None: return True if root.val <= min_val or root.val >= max_val: return False return self.helper(root.left, min_val, root.val) and self.helper(root.right, root.val, max_val)