zoukankan      html  css  js  c++  java
  • win10 + gluon + GPU

    1. 下载教程

    可以用浏览器下载zip格式并解压,在解压目录文件资源管理器的地址栏输入cmd进入命令行模式。

    也可以

    git pull https://github.com/mli/gluon-tutorials-zh

    2.安装gluon CPU

    添加源:

    # 优先使用清华conda镜像
    conda config --prepend channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
    
    # 也可选用科大conda镜像
    conda config --prepend channels http://mirrors.ustc.edu.cn/anaconda/pkgs/free/

    cmd中安装

    conda env create -f environment.yml
    activate gluon # 注意Windows下不需要 source

    可更新教程:

    conda env update -f environment.yml

    3.安装GPU版本

    先卸载CPU

    pip uninstall mxnet

    然后

    pip install --pre mxnet-cu75 # CUDA 7.5
    pip install --pre mxnet-cu80 # CUDA 8.0

    【可选项】国内用户可使用豆瓣pypi镜像加速下载:

    pip install --pre mxnet-cu75 -i https://pypi.douban.com/simple # CUDA 7.5
    pip install --pre mxnet-cu80 -i https://pypi.douban.com/simple # CUDA 8.0

    查看安装

    import pip
    for pkg in ['mxnet', 'mxnet-cu75', 'mxnet-cu80']:
        pip.main(['show', pkg])

    4.查看教程

     然后安装notedown,运行Jupyter并加载notedown插件:

    pip install https://github.com/mli/notedown/tarball/master
    jupyter notebook --generate-config jupyter notebook
    --NotebookApp.contents_manager_class='notedown.NotedownContentsManager'

     5.教程简记

    跟NumPy的转换

    from mxnet import ndarray as nd
    import numpy as np
    x = np.ones((2,3))
    y = nd.array(x)  # numpy -> mxnet
    z = y.asnumpy()  # mxnet -> numpy
    print([z, y])

    自动求导

    import mxnet.autograd as ag

    假设我们想对函数 $f = 2*x^2$ 求关于 $x$的导数

    1.创建变量

    x = nd.array([[1, 2], [3, 4]])

    2.通过NDArray的方法attach_grad()来要求系统申请梯度空间

    x.attach_grad()

    3.定义函数 f

    with ag.record():
        y = x * 2
        z = y * x

    4.反向传播,求梯度

    z.backward()

    5.梯度:

    print('x.grad: ', x.grad)

     线性回归,从零开始

    #coding=utf-8
    """线性回归,从零开始"""
    
    from mxnet import ndarray as nd
    from mxnet import autograd
    import matplotlib.pyplot as plt
    import random
    
    # 1.创建数据集
    # y[i] = 2 * X[i][0] - 3.4 * X[i][1] + 4.2 + noise
    # y = X*w + b + n
    num_inputs = 2
    num_examples = 1000
    
    true_w = [2, -3.4]
    true_b = 4.2
    
    X = nd.random_normal(shape=(num_examples, num_inputs))
    y = true_w[0] * X[:,0] + true_w[1] * X[:,1] + true_b
    y += 0.01 * nd.random_normal(shape=y.shape)
    
    # plt.scatter(X[:,1].asnumpy(), y.asnumpy())
    # plt.show()
    
    # 2.数据读取
    batch_size = 10
    def data_iter():
        # 产生一个随机索引
        idx = list(range(num_examples))
        random.shuffle(idx)
        for i in range(0, num_examples, batch_size):
            j = nd.array(idx[i:min(i+batch_size, num_examples)])
            yield nd.take(X, j), nd.take(y, j)
    
    # for data, label in data_iter():
    #     print (data, label)
    #     break
    
    # 3.初始化模型参数
    w = nd.random_normal(shape=(num_inputs,1))
    b = nd.zeros((1,))
    params = [w, b]
    
    # print (params)
    # 创建梯度空间
    for param in params:
        param.attach_grad()
    
    # 4.定义模型
    def net(X):
        return nd.dot(X, w) + b
    
    # 5.定义损失函数
    def square_loss(yhat, y):
        # 注意这里将y变形成yhat的形状来避免矩阵的broadcasting
        return (yhat - y.reshape(yhat.shape)) ** 2
    
    # 6.优化
    def SGD(params, lr):
        for param in params:
            param[:] = param - lr * param.grad
    
    # 7.训练
    # 模型函数
    def real_fn(X):
        return 2 * X[:, 0] - 3.4 * X[:, 1] + 4.2
    # 绘制损失随训练次数降低的折线图,以及预测值和真实值的散点图
    def plot(losses, X, sample_size=100):
        xs = list(range(len(losses)))
        fig, axes = plt.subplots(1, 2)
        axes[0].set_title('Loss during training')
        axes[0].plot(xs, losses, '-r')
        axes[1].set_title('Estimated vs real function')
        axes[1].plot(X[:sample_size, 1].asnumpy(),
                 net(X[:sample_size, :]).asnumpy(), 'or', label='Estimated')
        axes[1].plot(X[:sample_size, 1].asnumpy(),
                 real_fn(X[:sample_size, :]).asnumpy(), '*g', label='Real')
        axes[1].legend()
        plt.show()
    
    epochs = 5
    learning_rate = 0.001
    niter = 0
    losses = []
    moving_loss = 0
    smoothing_constant = 0.01
    
    # 训练
    for e in range(epochs):
        total_loss = 0
        # 每个epoch
        for data, label in data_iter():
            with autograd.record():
                output = net(data) # 前向传播
                loss = square_loss(output, label)
            loss.backward() # 反向传播
            SGD(params, learning_rate) # 更新参数
            iter_loss = nd.sum(loss).asscalar() / batch_size
            total_loss += nd.sum(loss).asscalar()
    
            # 记录损失变化
            niter += 1
            curr_loss = nd.mean(loss).asscalar()
            moving_loss = (1 - smoothing_constant) * moving_loss + smoothing_constant * curr_loss
    
            losses.append(iter_loss)
            if (niter + 1) % 100 == 0:
                print("Epoch %s, batch %s. Average loss: %f" % (e, niter, total_loss / num_examples))
                plot(losses, X)
    View Code

     使用GPU

    a = nd.array([1,2,3], ctx=mx.gpu())
    b = nd.zeros((3,2), ctx=mx.gpu())

    可以通过copytoas_in_context来在设备直接传输数据。

    y = x.copyto(mx.gpu())
    z = x.as_in_context(mx.gpu())

    这两个函数的主要区别是,如果源和目标的context一致,as_in_context不复制,而copyto总是会新建内存:

     这类似与caffe中的cuda操作

    float* tmp_transform_bbox = NULL;
    CUDA_CHECK(cudaMalloc(
    &tmp_transform_bbox, 7 * sizeof(Dtype) * rpn_pre_nms_top_n));//修改retained_anchor_num cudaMemcpy(tmp_transform_bbox, &transform_bbox_[transform_bbox_begin], rpn_pre_nms_top_n * sizeof(Dtype) * 7, cudaMemcpyDeviceToDevice);

     参数获取

    w = net[0].weight
    b = net[0].bias
    print 'name: ', net[0].name, '
    weight: ', w, '
    bias: ', b
    
    print('weight:', w.data())
    print('weight gradient', w.grad())
    print('bias:', b.data())
    print('bias gradient', b.grad())
    params = net.collect_params()
    print(params)
    print(params['sequential0_dense0_bias'].data())
    print(params.get('dense0_weight').data())

    参数初始化

    from mxnet import init
    params = net.collect_params()
    params.initialize(init=init.Normal(sigma=0.02), force_reinit=True)
    print(net[0].weight.data(), net[0].bias.data())

    6.使用中错误解决

    1.python2打印权重报错

    w = net[0].weight
    b = net[0].bias
    print('name: ', net[0].name, '
    weight: ', w, '
    bias: ', b)

    把C:Anaconda2envsgluonLibsite-packagesmxnetgluonparameter.py 119行改为

    s = 'Parameter {name} (shape={_shape}, dtype={dtype})'

    同时,如果是Python2需要把print后去掉括号。。。

  • 相关阅读:
    Comparable与Comparator
    【源码】String类、jdk1.6subString内存泄漏、字符串拼接几种区别、
    JAVA整型包装类的缓存策略
    通过tomcat把项目http请求转为https请求
    git rebase总结及git使用规范
    记一次对象序列化不打印value值为null的属性问题
    Layui-Tables+PHP分页
    Python操作字符串-截取IP地址
    命令行启动VMware虚拟机
    bat批处理备份桌面所有文档
  • 原文地址:https://www.cnblogs.com/xuanyuyt/p/7966135.html
Copyright © 2011-2022 走看看