zoukankan      html  css  js  c++  java
  • (转)Maximum subarray problem--Kadane’s Algorithm

    转自:http://kartikkukreja.wordpress.com/2013/06/17/kadanes-algorithm/

    本来打算自己写的,后来看到上述链接的博客已经说得很清楚了,就不重复劳动啦.

    Here, I describe variants of Kadane’s algorithm to solve the maximum subarray and the minimum subarray problems. The maximum subarray problem is to find the contiguous subarray having the largest sum. Likewise, the minimum subarray problem is to find the contiguous subarray having the smallest sum. Variants of Kadane’s algorithm can solve these problems in O(N) time.

    Kadane’s algorithm uses the dynamic programming approach to find the maximum (minimum) subarray ending at each position from the maximum (minimum) subarray ending at the previous position.

       1:  #include <cstdio>
       2:  #include <climits>
       3:  using namespace std;
       4:   
       5:  int maxSum(int *A, int lo, int hi)  {
       6:      int left = lo, right = lo, sum = INT_MIN, currentMaxSum = 0, maxLeft = lo, maxRight = lo;
       7:      for(int i = lo; i < hi; i++)    {
       8:          currentMaxSum += A[i];
       9:          if(currentMaxSum > sum) {
      10:              sum = currentMaxSum;
      11:              right = i;
      12:              maxLeft = left;
      13:              maxRight = right;
      14:          }
      15:          if(currentMaxSum < 0)   {
      16:              left = i+1;
      17:              right = left;
      18:              currentMaxSum = 0;
      19:          }
      20:      }
      21:      printf("Maximum sum contiguous subarray :");
      22:      for(int i = maxLeft; i <= maxRight; i++)
      23:          printf(" %d", A[i]);
      24:      printf("
    ");
      25:      return sum;
      26:  }
      27:   
      28:  int minSum(int *A, int lo, int hi)  {
      29:      int left = lo, right = lo, sum = INT_MAX, currentMinSum = 0, minLeft = lo, minRight = lo;
      30:      for(int i = lo; i < hi; i++)    {
      31:          currentMinSum += A[i];
      32:          if(currentMinSum < sum) {
      33:              sum = currentMinSum;
      34:              right = i;
      35:              minLeft = left;
      36:              minRight = right;
      37:          }
      38:          if(currentMinSum > 0)   {
      39:              left = i+1;
      40:              right = left;
      41:              currentMinSum = 0;
      42:          }
      43:      }
      44:      printf("Minimum sum contiguous subarray :");
      45:      for(int i = minLeft; i <= minRight; i++)
      46:          printf(" %d", A[i]);
      47:      printf("
    ");
      48:      return sum;
      49:  }
      50:   
      51:  int main()  {
      52:      int A[] = {3, 4, -3, -2, 6};
      53:      int N = sizeof(A) / sizeof(int);
      54:   
      55:      printf("Maximum sum : %d
    ", maxSum(A, 0, N));
      56:      printf("Minimum sum : %d
    ", minSum(A, 0, N));
      57:   
      58:      return 0;
      59:  }
  • 相关阅读:
    设计模式-1-概要(c#版)
    UML图示说明
    阿里云SLB双机IIS多站点负载均衡部署笔记
    阿里云分布式关系数据库DRDS笔记
    一些小经验
    NOSQL场景梳理
    内核linux-3.4.2支持dm9000
    构建根文件系统
    u-boot-1.1.6移植之dm9000
    移植u-boot-1.1.6(原创)
  • 原文地址:https://www.cnblogs.com/xubenben/p/3403597.html
Copyright © 2011-2022 走看看