zoukankan      html  css  js  c++  java
  • 高考数学九大超纲内容(1)wffc



    我校2016$ hicksim$2017学年度(上期)半期高三(理科)考试第12题

    已知奇函数(f(x))的定义域是((-1,0)igcuphspace{0.05cm}(0,1))(f(dfrac{1}{2})=0)

    (x>0)时,总有(f'(x)cos x>2f(x)sin x)成立(其中(f'(x))

    为函数(f(x))的导函数), 则不等式(f(log_2 x)>0)的解集为(underline{qquadlacktriangleqquad}.)


    【大致思路】关键的环节是构造符合(f'(x)cos x>2f(x)sin x)

    的函数,如何构造呢?那么请出我们的九大金刚之“常微分方程”,

    鉴于太超纲了,因此我们也不用搞清楚它的道理,只需要牢牢掌握

    套路就行了。好,现在来看这种套路的过程:

    (f'(x)cos x>2f(x)sin xRightarrow f'(x)cos x=2f(x)sin x)(“不等”变“等”)

    (Rightarrow dfrac{f'(x)}{f(x)}=dfrac{2sin x}{cos x})("参变"分离)

    (Rightarrow ln f(x)=-2lncos x)(两边积分)这步最关键

    (Rightarrow ln f(x)=lndfrac{1}{cos^2 x})(“两脚穿鞋”)

    (Rightarrow f(x)=dfrac{1}{cos^2 x})(“赤脚上阵”)

    (Rightarrow cos^2 x f(x)=1)(变量归“一”)

    (Rightarrow)构造函数(h(x)=cos^2 x f(x))

    验证:((cos^2 x f(x))'=cos^2xf'(x)-2cos xsin xf(x)=cos x[cos xf'(x)-2sin xf(x)])

    (Rightarrow (cos^2 x f(x))'>0Rightarrow)(x>0,h(x))单调递增

    (Rightarrow)(x>0,h(log_2x)=cos^2(log_2x)f(log_2x)>0=cos^2(frac{1}{2})f(frac{1}{2})=h(frac{1}{2})),后面略(.)

    哈哈!搞定!


    同事余登超老师提供如下构造法:

    (Rightarrow f'(x)cos x-f(x)sin x>f(x)sin x)

    (F(x)=f(x)cos xRightarrow F'(x)>f(x)sin xRightarrow F'(x)>F(x)dfrac{sin x}{cos x})

    (Rightarrow F'(x)cos x-F(x)sin x>0Rightarrow (F(x)cos x)'>0Rightarrow (f(x)cos^2x)'>0)

    哈哈!也搞定!


    【练习1】已知函数(f(x))的定义域为((0,+infty)),且满足(f'(x)>(1+dfrac{1}{x})f(x))(f(1)=1),则不等式

    (f(x)<x ext{e}^{x-1})的解集为(underline{qquadlacktriangleqquad}.)



    【练习2】已知函数(f(x))的定义域为((0,+infty)),且满足(xf'(x)-2f(x)=x^3ln x)(f( ext{e})= ext{e}^2),则函数(f(x))

    ((0,+infty))(underline{qquadlacktriangleqquad})

    A.有极大值,无极小值

    B.有极小值,无极大值

    C.既有极大值,又有极小值

    D.既无极大值,又无极小值


    【练习3】已知函数(f(x))的定义域为((-infty,+infty)),且满足(f(1+x)+f(1-x)=0)(f(2)=0)

    (x>1)时,(f'(x)+f(x)>0),则不等式(f(x)ln |x-1|<0)的解集为(underline{qquadlacktriangleqquad}.)


    每周看看我,冲进985!【魏刚的作品,转载须声明】
  • 相关阅读:
    一维,二维差分 (P3397 地毯)
    P3406 海底高铁
    P2004 领地选择
    priority_queue 大顶堆与小顶堆的用法 & 常见数据结构时间复杂度
    AcWing 电影
    P2678 跳石头
    HDU2041超级楼梯
    HDU2087剪花布条
    n条线分平面问题解决方法总结
    HDU2034 人见人爱A-B(C++)
  • 原文地址:https://www.cnblogs.com/xuebajunlutiji/p/6033238.html
Copyright © 2011-2022 走看看