zoukankan
html css js c++ java
高考数学九大超纲内容(1)wffc
我校2016$ hicksim$2017学年度(上期)半期高三(理科)考试第12题
已知奇函数
(f(x))
的定义域是
((-1,0)igcuphspace{0.05cm}(0,1))
,
(f(dfrac{1}{2})=0)
,
当
(x>0)
时,总有
(f'(x)cos x>2f(x)sin x)
成立(其中
(f'(x))
为函数
(f(x))
的导函数), 则不等式
(f(log_2 x)>0)
的解集为
(underline{qquadlacktriangleqquad}.)
【大致思路】
关键的环节是构造符合
(f'(x)cos x>2f(x)sin x)
的函数,如何构造呢?那么请出我们的九大金刚之“常微分方程”,
鉴于太超纲了,因此我们也不用搞清楚它的道理,只需要牢牢掌握
套路就行了。好,现在来看这种套路的过程:
(f'(x)cos x>2f(x)sin xRightarrow f'(x)cos x=2f(x)sin x)
(“不等”变“等”)
(Rightarrow dfrac{f'(x)}{f(x)}=dfrac{2sin x}{cos x})
("参变"分离)
(Rightarrow ln f(x)=-2lncos x)
(两边积分)这步最关键
(Rightarrow ln f(x)=lndfrac{1}{cos^2 x})
(“两脚穿鞋”)
(Rightarrow f(x)=dfrac{1}{cos^2 x})
(“赤脚上阵”)
(Rightarrow cos^2 x f(x)=1)
(变量归“一”)
(Rightarrow)
构造函数
(h(x)=cos^2 x f(x))
验证:
((cos^2 x f(x))'=cos^2xf'(x)-2cos xsin xf(x)=cos x[cos xf'(x)-2sin xf(x)])
(Rightarrow (cos^2 x f(x))'>0Rightarrow)
当
(x>0,h(x))
单调递增
(Rightarrow)
当
(x>0,h(log_2x)=cos^2(log_2x)f(log_2x)>0=cos^2(frac{1}{2})f(frac{1}{2})=h(frac{1}{2}))
,后面略
(.)
哈哈!搞定!
同事余登超老师提供如下构造法:
(Rightarrow f'(x)cos x-f(x)sin x>f(x)sin x)
令
(F(x)=f(x)cos xRightarrow F'(x)>f(x)sin xRightarrow F'(x)>F(x)dfrac{sin x}{cos x})
(Rightarrow F'(x)cos x-F(x)sin x>0Rightarrow (F(x)cos x)'>0Rightarrow (f(x)cos^2x)'>0)
哈哈!也搞定!
【练习1】已知函数
(f(x))
的定义域为
((0,+infty))
,且满足
(f'(x)>(1+dfrac{1}{x})f(x))
和
(f(1)=1)
,则不等式
(f(x)<x ext{e}^{x-1})
的解集为
(underline{qquadlacktriangleqquad}.)
【练习2】已知函数
(f(x))
的定义域为
((0,+infty))
,且满足
(xf'(x)-2f(x)=x^3ln x)
和
(f( ext{e})= ext{e}^2)
,则函数
(f(x))
在
((0,+infty))
上
(underline{qquadlacktriangleqquad})
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值,又有极小值
D.既无极大值,又无极小值
【练习3】已知函数
(f(x))
的定义域为
((-infty,+infty))
,且满足
(f(1+x)+f(1-x)=0)
和
(f(2)=0)
,
当
(x>1)
时,
(f'(x)+f(x)>0)
,则不等式
(f(x)ln |x-1|<0)
的解集为
(underline{qquadlacktriangleqquad}.)
每周看看我,冲进985!【魏刚的作品,转载须声明】
查看全文
相关阅读:
更新增加一个门店ID字段的值
测试成功,修改能运行代码--待优化
奶粉运营,跑数据三个模板。
子查询返回多条报错误
分析跑数口径与表内在关系逻辑
NAVICAT PREMIUM 初识
长沙生活
金蝶用户操作
EXCEL对比重复数据
处理链长期检查问题
原文地址:https://www.cnblogs.com/xuebajunlutiji/p/6033238.html
最新文章
在环境里面装包(每个环境就像一个大盒子,这里面可以放不同版本的同一个软件/包 来适应不同的需求)
安装PyTorch!!喜大普奔!!!
torch装包
“电视放着”的4月 简单记录那些📝
Dropout层作用:
Mac如何彻底关掉开机自动开启的应用程序
生物相关none Explaination
电脑硬件相关的名词解释
深度学习some 名词解释
十折交叉验证最后一次计算结果的特点
热门文章
9日期
strictfp
7.基本类型的包装类
三个正则表达式
5String的正则表达式
null和空的区别
字节数组转成字符串 去掉?
33 什么是编码
Mysql下载和安装
4 String类02 String类下的方法
Copyright © 2011-2022 走看看