zoukankan      html  css  js  c++  java
  • Python--Redis

    一、简介

    redis是一个key-value存储系统。和Memcached类似,他支持存储的value类型相对较多,包括string(字符串)、list(链表)、set(集合)、zset(有序集合)、hash(哈希类型)’。这些数据都在支持 push/pop、add/remove及取交集并集以及更丰富的操作,而且这些操作都是 原子性的。在此基础上,redis支持各种不同的方法的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。

    1. 使用Redis有哪些好处?
    
    (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
    
    (2) 支持丰富数据类型,支持string,list,set,sorted set,hash
    
    (3) 支持事务,操作都是原子性,所谓的原子性就是对数据的更改要么全部执行,要么全部不执行
    
    (4) 丰富的特性:可用于缓存,消息,按key设置过期时间,过期后将会自动删除
    
    
    2. redis相比memcached有哪些优势?
    
    (1) memcached所有的值均是简单的字符串,redis作为其替代者,支持更为丰富的数据类型
    
    (2) redis的速度比memcached快很多
    
    (3) redis可以持久化其数据
    
    
    3. redis常见性能问题和解决方案:
    
    (1) Master最好不要做任何持久化工作,如RDB内存快照和AOF日志文件
    
    (2) 如果数据比较重要,某个Slave开启AOF备份数据,策略设置为每秒同步一次
    
    (3) 为了主从复制的速度和连接的稳定性,Master和Slave最好在同一个局域网内
    
    (4) 尽量避免在压力很大的主库上增加从库
    
    (5) 主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1 <- Slave2 <- Slave3...
    
    这样的结构方便解决单点故障问题,实现Slave对Master的替换。如果Master挂了,可以立刻启用Slave1做Master,其他不变。
    
    
    
     
    
    4. MySQL里有2000w数据,redis中只存20w的数据,如何保证redis中的数据都是热点数据
    
     相关知识:redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。redis 提供 6种数据淘汰策略:
    
    voltile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
    
    volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
    
    volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
    
    allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
    
    allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
    
    no-enviction(驱逐):禁止驱逐数据
    
     
    
    5. Memcache与Redis的区别都有哪些?
    
    1)、存储方式
    
    Memecache把数据全部存在内存之中,断电后会挂掉,数据不能超过内存大小。
    
    Redis有部份存在硬盘上,这样能保证数据的持久性。
    
    2)、数据支持类型
    
    Memcache对数据类型支持相对简单。
    
    Redis有复杂的数据类型。
    
    
    3),value大小
    
    redis最大可以达到1GB,而memcache只有1MB
    
    
    
    6. Redis 常见的性能问题都有哪些?如何解决?
    
     
    
    1).Master写内存快照,save命令调度rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务,所以Master最好不要写内存快照。
    
    
    2).Master AOF持久化,如果不重写AOF文件,这个持久化方式对性能的影响是最小的,但是AOF文件会不断增大,AOF文件过大会影响Master重启的恢复速度。Master最好不要做任何持久化工作,包括内存快照和AOF日志文件,特别是不要启用内存快照做持久化,如果数据比较关键,某个Slave开启AOF备份数据,策略为每秒同步一次。
    
     
    3).Master调用BGREWRITEAOF重写AOF文件,AOF在重写的时候会占大量的CPU和内存资源,导致服务load过高,出现短暂服务暂停现象。
    
    4). Redis主从复制的性能问题,为了主从复制的速度和连接的稳定性,Slave和Master最好在同一个局域网内
    
    
    
    
    7, redis 最适合的场景
    
    
    Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?
    
           如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
    
         1 、Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
         2 、Redis支持数据的备份,即master-slave模式的数据备份。
         3 、Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
    
    (1)、会话缓存(Session Cache)
    
    最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗?
    
    幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
    
    (2)、全页缓存(FPC)
    
    除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
    
    再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
    
    此外,对WordPress的用户来说,Pantheon有一个非常好的插件  wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
    
    (3)、队列
    
    Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
    
    如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。
    
    (4),排行榜/计数器
    
    Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:
    
    当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:
    
    ZRANGE user_scores 0 10 WITHSCORES
    
    Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。
    
    (5)、发布/订阅
    
    最后(但肯定不是最不重要的)是Redis的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用Redis的发布/订阅功能来建立聊天系统!(不,这是真的,你可以去核实)。
    
    Redis提供的所有特性中,我感觉这个是喜欢的人最少的一个,虽然它为用户提供如果此多功能。
    View Code

    支持的数据类型(5大数据类型)

    redis={
            k1:'123',      字符串
            k2:[1,2,3,4],   列表/数组
            k3:{1,2,3,4}     集合
            k4:{name:lqz,age:12}  字典/哈希表
            k5:{('lqz',18),('egon',33)}  有序集合
    }

    特点:

    可以持久化,单线程,单进程

    二、redis的安装

    Linux下安装

    wget http://download.redis.io/releases/redis-3.0.6.tar.gz
    tar xzf redis-3.0.6.tar.gz
    cd redis-3.0.6
    make

    启动服务端

    src/redis-server

    启动客户端

    src/redis-cli
    redis> set foo bar
    OK
    redis> get foo
    "bar"

    Windows下安装

    详见:链接(https://www.cnblogs.com/xuecaichang/p/10181344.html)

    三、Python操作redis之安装和支持 存储类型

    安装redis模块

    pip install redis

    四、Python操作之redis之普通连接

    import redis
    conn = redis.Redis(host='127.0.0.1', port=6379)
    conn.set('foo', 'Bar')
    print(conn.get('foo'))

    五、Python操作之redis之连接池

    import redis
    # 拿到一个redis的连接池
    pool=redis.ConnectionPool(host='127.0.0.1',port=6379,max_connections=100)
    # 每执行一次,从池子里拿一个链接
    conn=redis.Redis(connection_pool=pool)
    print(conn.get('name').decode('utf-8'))

    六、操作之String操作

    String操作,reis中的string在内存中按照一个name对应一个value来存储。如图:

    set(name, value, ex=None, px=None, nx=False, xx=False)

    在Redis中设置值,默认,不存在则创建,存在则修改
    参数:
         ex,过期时间(秒)
         px,过期时间(毫秒)
         nx,如果设置为True,则只有name不存在时,当前set操作才执行,值存在,就修改不了,执行没效果
         xx,如果设置为True,则只有name存在时,当前set操作才执行,值存在才能修改,值不存在,不会设置新值

    # conn.set('token','ewretrrgf123',ex=5) # conn.set('name','张煜',nx=False) # conn.set('age','13',xx=True) # conn.setex('token',5,'dddddd') # 5秒之后消失

    setnx(name,value)

    设置值,只有name不存在时,执行设置操作(添加),如果存在,不会修改

    setex(name,time,value)

    # 设置值
    # 参数:
        # time,过期时间(数字秒 或 timedelta对象)

    psetex(name,time_ms,value)

    # 设置值
    # 参数:
        # time_ms,过期时间(数字毫秒 或 timedelta对象

    mset(*args,**kwargs)

    # mest传字典
    # conn.mset({'k1':'11','k2':'333','k3':444})

    get(name)

    获取值
    print(conn.get('k1'))

    getset(name,value)

    设置新值,并获取原来的值

    getrange(key,start,end)

    获取子序列(根据字节获取,非字符)
    参数:
        name:redis的name
        start: 起始位置 (字节)
        end:结束位置(字节)
        如:‘薛才昌’,0-3表示‘薛’

    setrange(name,offset,value)

    修改字符串内容,从指定的字符串索引开始向后替换(新值太长时,则向后添加)
    参数:
        offset,字符串的索引,字节(一个汉字三个字节)
        value,要设置的值

    setbit(name, offset, value)

    # 对name对应值的二进制表示的位进行操作
     
    # 参数:
        # name,redis的name
        # offset,位的索引(将值变换成二进制后再进行索引)
        # value,值只能是 1 或 0
     
    # 注:如果在Redis中有一个对应: n1 = "foo",
            那么字符串foo的二进制表示为:01100110 01101111 01101111
        所以,如果执行 setbit('n1', 7, 1),则就会将第7位设置为1,
            那么最终二进制则变成 01100111 01101111 01101111,即:"goo"

    getbit(name,offset)

    获取name对应的值二进制表示中的某位的值(0或1)

    bitcount(key, start=None, end=None)

    # 获取name对应的值的二进制表示中 1 的个数
    # 参数:
        # key,Redis的name
        # start,位起始位置
        # end,位结束位置

    bitop(operation, dest, *keys)

    # 获取多个值,并将值做位运算,将最后的结果保存至新的name对应的值
     
    # 参数:
        # operation,AND(并) 、 OR(或) 、 NOT(非) 、 XOR(异或)
        # dest, 新的Redis的name
        # *keys,要查找的Redis的name
     
    # 如:
        bitop("AND", 'new_name', 'n1', 'n2', 'n3')
        # 获取Redis中n1,n2,n3对应的值,然后讲所有的值做位运算(求并集),然后将结果保存 new_name 对应的值中

    strlen(name)

    返回name对应值的字节的长度

    incr(self,name,amount=1)

    # incr自增
    # conn.incr('k1',2)

    decr(self, name, amount=1)

    # 自减
    # conn.decr('k2',2)

    append(key,value)

    # 添加,在redis name对应的值后面追加内容
    # conn.append('k1','sfdgfgd')
    conn.append('k1',11)

    七、hash操作

    hset(name, key, value)

    # name对应的hash中设置一个键值对(不存在,则创建;否则,修改)
    
    conn.hset('m1','key1','value1')
     
    # 参数:
        # name,redis的name
        # key,name对应的hash中的key
        # value,name对应的hash中的value
     
    # 注:
        # hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)

    hmset(name,mapping)

    # 在name对应的hash中批量设置键值对
    
    
    # conn.hmset('m2',{'key1':'value1','key2':'value2'})
    print(conn.hget('m2','key2'))
     
    # 参数:
        # name,redis的name
        # mapping,字典,如:{'k1':'v1', 'k2': 'v2'}
     
    # 如:
        # r.hmset('xx', {'k1':'v1', 'k2': 'v2'})

    hget(name,key,*args)

    在name对应的hash中获取根据key获取value

    hmget(name, keys, *args)

    复制代码
    # 在name对应的hash中获取多个key的值
     
    # 参数:
        # name,reids对应的name
        # keys,要获取key集合,如:['k1', 'k2', 'k3']
        # *args,要获取的key,如:k1,k2,k3
     
    # 如:
        # r.mget('xx', ['k1', 'k2'])
        #
        # print r.hmget('xx', 'k1', 'k2')
    复制代码

    hgetall(name)

    # 获取name对应hash的所有键值
    print(re.hgetall('xxx').get(b'name'))

    hlen(name)

    # 获取name对应的hash中键值对的个数

    hkeys(name)

    # 获取name对应的hash中所有的key的值

    hvals(name)

    # 获取name对应的hash中所有的value的值

    hexists(name, key)

    # 检查name对应的hash是否存在当前传入的key

    hdel(name,*keys)

    # 将name对应的hash中指定key的键值对删除
    print(re.hdel('xxx','sex','name'))

    hincrby(name, key, amount=1)

    # 自增name对应的hash中的指定key的值,不存在则创建key=amount
    # 参数:
        # name,redis中的name
        # key, hash对应的key
        # amount,自增数(整数)

    hincrbyfloat(name, key, amount=1.0)

    复制代码
    # 自增name对应的hash中的指定key的值,不存在则创建key=amount
     
    # 参数:
        # name,redis中的name
        # key, hash对应的key
        # amount,自增数(浮点数)
     
    # 自增name对应的hash中的指定key的值,不存在则创建key=amount
    复制代码

    hscan(name, cursor=0, match=None, count=None)

    复制代码
    # 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆
     
    # 参数:
        # name,redis的name
        # cursor,游标(基于游标分批取获取数据)
        # match,匹配指定key,默认None 表示所有的key
        # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
     
    # 如:
        # 第一次:cursor1, data1 = r.hscan('xx', cursor=0, match=None, count=None)
        # 第二次:cursor2, data1 = r.hscan('xx', cursor=cursor1, match=None, count=None)
        # ...
        # 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕
    复制代码

    hscan_iter(name, match=None, count=None)

    复制代码
    # 利用yield封装hscan创建生成器,实现分批去redis中获取数据
     
    # 参数:
        # match,匹配指定key,默认None 表示所有的key
        # count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
     
    # 如:
        # for item in r.hscan_iter('xx'):
        #     print item
    复制代码

     

     
  • 相关阅读:
    C# winfrom ListView控件实现自由设置每一行字体及背景色等
    VS2017Enterprise版本安装ImageWatch 2017问题解决
    C++ 对于函数名的操作,函数名本身和取*以及取&的区别
    C++数组和指针
    相机像素和显示分辨率
    (最简单详细)IronPython下载、安装及简单使用
    DataRow修改某一Cell的值
    DataGridView控件绑定数据之后,置顶操作
    DataGridVIew控件绑定数据之后的,增、插、删操作
    毕向东java基础课学习笔记4——标识符、常量、变量
  • 原文地址:https://www.cnblogs.com/xuecaichang/p/10181291.html
Copyright © 2011-2022 走看看