zoukankan      html  css  js  c++  java
  • (TOJ3114){A}∩{B}

    描述

    Given two integer sets A and B sorted descendingly, you are asked to output the element count of A∩B.

    输入

    Standard input will contain multiple test cases. The first line of the input is a single integrate T (1 <= T <= 50) which is the number of test cases. then T consecutive test cases followed. In each test case, there has four lines. The first line contains the element count N(1<=N<=100000) for the first set. The second line contains N integers in the first set.
    The third line contains the element count M(1<=M<=100000) for the second set. The fourth line contains M integers in the second set.

    NOTE: there will be no duplicate elements in each sets and all the integers in each set have been sorted descendingly.

    输出

    For each test case in the input, there's only one line output that contains the element count of the intesection of the two sets.

    样例输入

    1
    5
    5 4 3 2 1
    4
    5 3 1 -1

    样例输出

    3
     1 #include<stdio.h>
     2 #include<string.h>
     3 #include<ctype.h>
     4 #include<math.h>
     5 
     6 int a[100001],b[100001];
     7 
     8 void deal(int c[], int n, int d[], int m)
     9 {
    10     int i,j,flag;
    11     flag=i=j=0;
    12     while(i<n && j<m){
    13         if(c[i]<d[j]){j++;}
    14         else if(c[i]==d[j]){
    15             flag++;
    16             i++; j++;
    17         }else{
    18           i++;    
    19         }
    20     }
    21     printf("%d\n",flag);
    22 }
    23 
    24 void solve()
    25 {
    26     int T,n,m,i;
    27     scanf("%d",&T);
    28     while(T--){
    29         scanf("%d",&n);
    30         for(i=0; i<n; i++){
    31             scanf("%d",&a[i]);
    32         }
    33         scanf("%d",&m);
    34         for(i=0; i<m; i++){
    35             scanf("%d",&b[i]);
    36         }
    37         deal(a,n,b,m);        
    38     }
    39 }
    40 
    41 int main()
    42 {
    43     solve();
    44     return 0;
    45 }
     
  • 相关阅读:
    代码签名证书原理和作用
    安装SSL证书有什么作用?
    有关如何修复Android手机上的SSL连接错误的快速指南
    可信时间戳如何生成?时间戳基本工作原理
    全球通用的数字证书产品选购指南
    国密SSL证书申请免费试用
    国密SSL证书免费试用申请指南
    哈希算法的原理和用途详解
    https证书安装无效的主要原因
    Anatomy of a Database System学习笔记
  • 原文地址:https://www.cnblogs.com/xueda120/p/3095045.html
Copyright © 2011-2022 走看看