zoukankan      html  css  js  c++  java
  • 476. Number Complement

    题目

    Given a positive integer, output its complement number. The complement strategy is to flip the bits of its binary representation.

    Note:

    1. The given integer is guaranteed to fit within the range of a 32-bit signed integer.
    2. You could assume no leading zero bit in the integer’s binary representation.

    Example 1:
    Input: 5
    Output: 2
    Explanation: The binary representation of 5 is 101 (no leading zero bits), and its complement is 010. So you need to output 2.

    Example 2:
    Input: 1
    Output: 0
    Explanation: The binary representation of 1 is 1 (no leading zero bits), and its complement is 0. So you need to output 0.

    分析

    将int的二进制表示(不包括前缀0)中所有0变为1,1变为0

    解答

    解法1:(我)(11ms√)

    例1:

    5: 00000000000000000000000000000101
    ~5: 11111111111111111111111111111010 (补码形式,原码是10000000000000000000000000000110,值为-6)
    -23: 11111111111111111111111111111000 (补码形式,原码是10000000000000000000000000001000,值为-23)
    ~5-(-23): 00000000000000000000000000000010 (值为2)

    例2:

    231-1: 01111111111111111111111111111111
    ~(231-1): 10000000000000000000000000000000 (值为-231)
    -231: 10000000000000000000000000000000
    ~(231-1)-(-231): 00000000000000000000000000000000 (值为0)

    注:此处(2<sup>31</sup>-1)-(-2<sup>31</sup>)不能写为(231-1)+231,因为int中正数231超出最大值范围,会被解析成231-1,而负数(-231)没有超出最小值范围


    int的最大值:01111111111111111111111111111111 (值为231-1)
    int的非最小值:11111111111111111111111111111111 (值为-(231-1) )
    int的最小值:10000000000000000000000000000000 (值为-231)(特殊:使用以前的-0的补码来表示, 所以-231并没有原码和反码表示)

    public class Solution {
        public int findComplement(int num) {
            return ~num - (int)-Math.pow(2,32-Integer.numberOfLeadingZeros(num));
        }
    }
    


    解法2:使用系统内置函数Integer.highestOneBit()(13ms)

    Integer.highestOneBit() 返回一个int值:如果i具有'1'位,则返回值具有1个'1'位,其位置即是i的最高位(最左边)的'1'位的位置;如果i不具有'1'位,则i=0,返回0。例:Integer.highestOneBit(5) = 4,因为5的二进制表示为101,返回值的二进制表示为100

    例1:

    5: 00000000000000000000000000000101
    ~5: 11111111111111111111111111111010
    a: 00000000000000000000000000001000 (a=Integer.highestOneBit(5) << 1)
    ~5+a: 00000000000000000000000000000010 (值为2)

    例2:

    231-1: 01111111111111111111111111111111
    ~(231-1): 10000000000000000000000000000000 (值为-231)
    a: 10000000000000000000000000000000
    ~(231-1)+a: 00000000000000000000000000000000 (值为0)

    public class Solution {
        public int hammingDistance(int x, int y){
            String str = Integer.toBinaryString(x ^ y);//或Integer.toString(x ^ y , 2)
            String str2 = str.replaceAll("1","");
            return str.length() - str2.length();
        }
    }
    
  • 相关阅读:
    包含min函数的栈
    栈的应用
    给定金额m和红包数量n
    顺时针打印矩阵
    二叉树的镜像
    elementUI table表头错位问题
    金额格式化
    ajax跨域问题全解
    JavaScript 的 this 原理
    vue技术分享-你可能不知道的7个秘密
  • 原文地址:https://www.cnblogs.com/xuehaoyue/p/6412487.html
Copyright © 2011-2022 走看看