zoukankan      html  css  js  c++  java
  • hdu 1159 Common Subsequence

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 24312    Accepted Submission(s): 10747


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     
    Sample Input
    abcfbc abfcab
    programming contest
    abcd mnp
     
    Sample Output
    4
    2
    0
     
    Source
     
     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<cstdlib>
     5 #include<cstring>
     6 using namespace std;
     7 char x[509],y[509];
     8 int z[509][509];
     9 int main()
    10 {
    11     while(~scanf("%s%s",x,y))
    12     {
    13         memset(z,0,sizeof(z));
    14         int l1,l2;
    15         l1=strlen(x);
    16         l2=strlen(y);
    17         int i,j;
    18         for(i=0;i<=l1;i++)
    19         z[0][i]=0;
    20         for(j=0;j<=l2;j++)
    21         z[j][0]=0;
    22 
    23         for(i=1;i<=l1;i++)
    24         {
    25             for(j=1;j<=l2;j++)
    26             {
    27                 if(x[i-1]==y[j-1])
    28                 {
    29                     z[i][j]=z[i-1][j-1]+1;
    30                 }
    31                 else
    32                 z[i][j]=max(z[i-1][j],z[i][j-1]);
    33             }
    34         }
    35         printf("%d
    ",z[l1][l2]);
    36     }
    37     return 0;
    38 }
    View Code
  • 相关阅读:
    RBAC-基于角色的访问控制
    django缓存机制
    drf JWT认证
    drf自动生成接口文档
    drf多表断表操作
    drf过滤排序分页异常处理
    drf认证权限频率
    drf路由组件
    drf视图组件
    drf请求与响应
  • 原文地址:https://www.cnblogs.com/xuesen1995/p/4115992.html
Copyright © 2011-2022 走看看