140. Integer Sequences
time limit per test: 0.25 sec.
memory limit per test: 4096 KB
A sequence A is called an integer sequence of length N if all its elements A1 A2 .. AN are non-negative integers less than 2 000 000 000. Consider two integer sequences of length N, A and X. The result of their multiplication (A*X) is an integer number R=A1*X1 + A2*X2 + .. + AN*XN. Your task is to solve the equation A*X=B (mod P), given the integer sequence A and the integer numbers B and P.
Input
The first line contains the integer numbers N (1<=N<=100) - the length of the integer sequences - P (1<=P<=10 000) and B (0<=B<=P-1). The second line contains the elements of the sequence A, separated by blanks: A1 A2 .. AN.
Output
You should print one line containing the word "YES" if there exists at least one integer sequence X which is a solution to the equation, or print "NO" otherwise. If the answer is "YES", the next line should contain N non-negative integers separated by blanks: X1 X2 .. XN.
Sample Input #1
2 7 4 7 3
Sample Output #1
YES 0 6
Sample Input #2
3 10 1 2 4 6
Sample Output #2
NO
线性同余方程,不断使前k个项余p得到最大公约数,同除去最大公约数,逆推即可
#include <cstdio> using namespace std; int extgcd(int a,int b,int& x,int& y){ if(a==0){ x=0;y=1; return b; } int t=extgcd(b%a,a,x,y); int temp=x; x=y-b/a*x; y=temp; return t; } int num[110],x[110],y[110]; int main(){ int cgcd,n,p,b; scanf("%d%d%d",&n,&p,&b); for(int i=0;i<n;i++){ scanf("%d",num+i); num[i]%=p; } cgcd=num[0]; for(int i=1;i<n;i++){ cgcd=extgcd(cgcd,num[i],x[i],y[i]); } cgcd=extgcd(cgcd,p,x[n],y[n]); if(b%cgcd!=0)puts("NO"); else { puts("YES"); b/=cgcd; y[0]=1; for(int i=n-1;i>=0;i--){ while(x[i+1]<0)x[i+1]+=p; b*=x[i+1]; b%=p; while(y[i]<0)y[i]+=p; y[i]=y[i]*b%p; } for(int i=0;i<n;i++){ printf("%d%c",y[i],i==n-1?' ':' '); } } return 0; }