zoukankan      html  css  js  c++  java
  • CF 483B. Friends and Presents 数学 (二分) 难度:1

    B. Friends and Presents
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You have two friends. You want to present each of them several positive integers. You want to present cnt1 numbers to the first friend and cnt2 numbers to the second friend. Moreover, you want all presented numbers to be distinct, that also means that no number should be presented to both friends.

    In addition, the first friend does not like the numbers that are divisible without remainder by prime number x. The second one does not like the numbers that are divisible without remainder by prime number y. Of course, you're not going to present your friends numbers they don't like.

    Your task is to find such minimum number v, that you can form presents using numbers from a set 1, 2, ..., v. Of course you may choose not to present some numbers at all.

    A positive integer number greater than 1 is called prime if it has no positive divisors other than 1 and itself.

    Input

    The only line contains four positive integers cnt1, cnt2, xy (1 ≤ cnt1, cnt2 < 10^9; cnt1 + cnt2 ≤ 10^9; 2 ≤ x < y ≤ 3·10^4) — the numbers that are described in the statement. It is guaranteed that numbers xy are prime.

    Output

    Print a single integer — the answer to the problem.

    Sample test(s)
    input
    3 1 2 3
    output
    5
    input
    1 3 2 3
    output
    4
    感想:其实直接二分就行了,但是我分类了好一会儿,直接算的
    思路:
    分成四种情况,1 不能被x,y整除(a) 2 不能被x整除(b) 3 不能被x整除(c) 4 同时能被x,y整除
    那么就需要满足
    a+b>=cnt2
    a+c>=cnt1
    a+b+c>=cnt1+cnt2
    于是算来算去就算出来了,还是二分好用
     
    #include<cstdio>
    #include <cmath>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    ll x,y,cnt1,cnt2;
    ll gcd(ll a,ll b){
        if(b==0)return a;
        return gcd(b,a%b);
    }
    ll pos(ll a){
        if(a>=0)return a;
        return 0;
    }
    int main(){
        scanf("%I64d%I64d%I64d%I64d",&cnt1,&cnt2,&x,&y);
        ll d=gcd(x,y);
        ll lcm=x*y/d;
        ll na=lcm-lcm/x-lcm/y+1;
        ll nb=lcm/x-1;
        ll nc=lcm/y-1;
        ll sumn=na+nb+nc;
        ll t=(cnt1+cnt2)/sumn;
        t=max(t,cnt2/(na+nb));
        t=max(t,cnt1/(na+nc));
        ll ta=na*t;
        ll tb=nb*t;
        ll tc=nc*t;
        ll ans=lcm*t;
        if((pos(cnt2-tb)+pos(cnt1-tc))<=ta)ans--;
        else {
                ll r=0x7fffffff;
                ll r0=pos(cnt2-tb)+pos(cnt1-tc)-ta;
                if(r0>=0&&cnt2>=tb&&cnt1>=tc)r=min(r,r0);
    
                ll r1=x*(cnt1-tc-ta)/(x-1);
                ll tr11=cnt1-tc-ta+(r1/x-1);
                if(tr11/x==r1/x-1)r1=min(r1,tr11);
                r1=max(r1,x*(cnt2-tb));
                if(cnt1>=tc+ta)r=min(r,r1);
                ll r2=y*(cnt2-tb-ta)/(y-1);
                ll tr2=cnt2-tb-ta+(r2/y-1);
                if(tr2/y==r2/y-1)r2=min(r2,tr2);
                r2=max(r2,y*(cnt1-tc));
                if(cnt2>=tb+ta)r=min(r,r2);
                ans+=r;
        }
        printf("%I64d
    ",ans);
        return 0;
    }
    

      

     
  • 相关阅读:
    简单查询plan
    EXP AND IMP
    (4.16)sql server迁移DB文件(同一DB内)
    sql server日志传送实践(基于server 2008 R2)
    (1.3)学习笔记之mysql体系结构(C/S整体架构、内存结构、物理存储结构、逻辑结构、SQL查询流程)
    (1.2)学习笔记之mysql体系结构(数据库文件)
    (1.1)学习笔记之mysql体系结构(内存、进程、线程)
    SSAS(SQL Server 分析服务)、***S(SQL Server报表服务)、SSIS(SQL Server集成服务)
    教你使用SQL查询(1-12)
    Sql Server内置函数实现MD5加密
  • 原文地址:https://www.cnblogs.com/xuesu/p/4065212.html
Copyright © 2011-2022 走看看