zoukankan      html  css  js  c++  java
  • 机电传动控制第四周仿真作业

    机电传动控制第四周仿真作业

    题目要求:

    结合本周学习的交流电机原理及启动、调速、制动特性,用Modelica设计和仿真一个用三相交流异步电机带动起重机起升机构运行。具体要求如下:

    1)实现如下机械运动周期:

    • 控制电机带重物上升,从静止加速到800r/min
    • 保持800r/min匀速运动0.5s,
    • 减速到静止,保持静止状态0.5s,
    • 带重物下降,从静止达到600r/min
    • 保持600r/min匀速运动0.6s,
    • 减速到静止。
      (为了便于仿真,匀速和静止持续时间较短)

    2) 升降机构和重物折算到到电机转子轴上的等效负载惯量为1Kg.m^2,折算到到电机转子轴上的等效负载转矩是15N.m。

    3)使用统一的电机模型,如果控制策略中用到转子串电阻,允许将该电机的转子改为绕线式转子(参数不变)。

    4)参照教材中给出的交流电机启动、调速和制动方法,设计控制策略,用Modelica实现控制策略并与电机模型实现联合仿真。

    5)可以采用定子串电阻、转子串电阻、定子调压、定子调频等手段,但必须具备工程上的可实施性。

    6)评价指标:快速启动、制动,冲击转矩和冲击电流小,能耗小,兼顾实施的经济性。

    仿真分析:

    为实现高启动转矩和低启动电流的较好启动特性,仿真选取了绕线异步电动机的逐级切除启动电阻法实现电机的启动,同时选取转子串接电阻法作为调速方法,以反接制动作为制动方式,控制全过程中转矩大小不大于85N·m,全过程电流大小不超过25A,最终仿真全过程用时6690ms,仿真使用电机模型参数为:额定电压(相电压)220 V,额定频率50 Hz,极对数p=3,电机转动惯量0.1 kg.m^2,负载转动惯量1 kg.m^2,定子电阻:0.531 Ohm,转子电阻:0.408 Ohm,定子漏感:2.52 mH,转子漏感:2.52 mH,互感:8.47 mH,仿真过程中使用辅助参数来实现对过程时间点的定位。

    仿真代码及结果:

    model SACIM "A Simple AC Induction Motor Model"

    type Voltage=Real(unit="V");

    type Current=Real(unit="A");

    type Resistance=Real(unit="Ohm");

    type Inductance=Real(unit="H");

    type Speed=Real(unit="r/min");

    type Torque=Real(unit="N.m");

    type Inertia=Real(unit="kg.m^2");

    type Frequency=Real(unit="Hz");

    type Flux=Real(unit="Wb");

    type Angle=Real(unit="rad");

    type AngularVelocity=Real(unit="rad/s");

    constant Real Pi = 3.1415926;

    Real y1;

    Real y2;

    Real z;

    Current i_A"A Phase Current of Stator";

    Current i_B"B Phase Current of Stator";

    Current i_C"C Phase Current of Stator";

    Voltage u_A"A Phase Voltage of Stator";

    Voltage u_B"B Phase Voltage of Stator";

    Voltage u_C"C Phase Voltage of Stator";

    Current i_a"A Phase Current of Rotor";

    Current i_b"B Phase Current of Rotor";

    Current i_c"C Phase Current of Rotor";

    Frequency f_s"Frequency of Stator";

    Torque Tm"Torque of the Motor";

    Speed n"Speed of the Motor";

    Flux Psi_A"A Phase Flux-Linkage of Stator";

    Flux Psi_B"B Phase Flux-Linkage of Stator";

    Flux Psi_C"C Phase Flux-Linkage of Stator";

    Flux Psi_a"a Phase Flux-Linkage of Rotor";

    Flux Psi_b"b Phase Flux-Linkage of Rotor";

    Flux Psi_c"c Phase Flux-Linkage of Rotor";

    Angle phi"Electrical Angle of Rotor";

    Angle phi_m"Mechnical Angle of Rotor";

    AngularVelocity w"Angular Velocity of Rotor";

    Resistance R1;

    parameter Torque Tl =15 "Load Torque";

    parameter Torque Tmax = 85;

    parameter Torque Tmin = -85;

    parameter Current imax = 25;

    parameter Current imin = -25;

    parameter Resistance Rs = 0.531"Stator Resistance";

    parameter Resistance Rr = 0.408"Rotor Resistance";

    parameter Inductance Ls = 0.00252"Stator Leakage Inductance";

    parameter Inductance Lr = 0.00252"Rotor Leakage Inductance";

    parameter Inductance Lm = 0.00847"Mutual Inductance";

    parameter Frequency f_N = 50"Rated Frequency of Stator";

    parameter Voltage u_N = 220"Rated Phase Voltage of Stator";

    parameter Real p =3"number of pole pairs";

    parameter Inertia Jm = 0.1"Motor Inertia";

    parameter Inertia Jl = 1"Load Inertia";

    initial equation

    Psi_A = 0;

    Psi_B = 0;

    Psi_C = 0;

    Psi_a = 0;

    Psi_b = 0;

    Psi_c = 0;

    phi = 0;

    w = 0;

    equation

    u_A = Rs * i_A + 1000 * der(Psi_A);

    u_B = Rs * i_B + 1000 * der(Psi_B);

    u_C = Rs * i_C + 1000 * der(Psi_C);

    0 = (Rr+R1) * i_a + 1000 * der(Psi_a);

    0 = (Rr+R1) * i_b + 1000 * der(Psi_b);

    0 = (Rr+R1) * i_c + 1000 * der(Psi_c);

    Psi_A = (Lm+Ls)*i_A + (-0.5*Lm)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi))*i_a + (Lm*cos(phi+2*Pi/3))*i_b + (Lm*cos(phi-2*Pi/3))*i_c;

    Psi_B = (-0.5*Lm)*i_A + (Lm+Ls)*i_B + (-0.5*Lm)*i_C + (Lm*cos(phi-2*Pi/3))*i_a + (Lm*cos(phi))*i_b + (Lm*cos(phi+2*Pi/3))*i_c;

    Psi_C = (-0.5*Lm)*i_A + (-0.5*Lm)*i_B + (Lm+Ls)*i_C + (Lm*cos(phi+2*Pi/3))*i_a + (Lm*cos(phi-2*Pi/3))*i_b + (Lm*cos(phi))*i_c;

    Psi_a = (Lm*cos(phi))*i_A + (Lm*cos(phi-2*Pi/3))*i_B + (Lm*cos(phi+2*Pi/3))*i_C + (Lm+Lr)*i_a + (-0.5*Lm)*i_b + (-0.5*Lm)*i_c;

    Psi_b = (Lm*cos(phi+2*Pi/3))*i_A + (Lm*cos(phi))*i_B + (Lm*cos(phi-2*Pi/3))*i_C + (-0.5*Lm)*i_a + (Lm+Lr)*i_b + (-0.5*Lm)*i_c;

    Psi_c = (Lm*cos(phi-2*Pi/3))*i_A + (Lm*cos(phi+2*Pi/3))*i_B + (Lm*cos(phi))*i_C + (-0.5*Lm)*i_a + (-0.5*Lm)*i_b + (Lm+Lr)*i_c;

    Tm =-p*Lm*((i_A*i_a+i_B*i_b+i_C*i_c)*sin(phi)+(i_A*i_b+i_B*i_c+i_C*i_a)*sin(phi+2*Pi/3)+(i_A*i_c+i_B*i_a+i_C*i_b)*sin(phi-2*Pi/3));

    w = 1000 * der(phi_m);

    phi_m = phi/p;

    n= w*60/(2*Pi);

    Tm-Tl = (Jm+Jl) * 1000 * der(w);

    if time <= 100 then

    u_A = 0;

    u_B = 0;

    u_C = 0;

    f_s = 0;

    elseif time <= 2430 then

    f_s = f_N;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3);

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3);

    elseif time <= 3560 then

    f_s = f_N;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3);

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3);

    elseif time <= 4060 then

    f_s = f_N;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3);

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3);

    elseif time <= 4901 then

    f_s = f_N;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3);

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3);

    else

    f_s = f_N;

    u_A = u_N * 1.414 * sin(2*Pi*f_s*time/1000);

    u_B = u_N * 1.414 * sin(2*Pi*f_s*time/1000-2*Pi/3);

    u_C = u_N * 1.414 * sin(2*Pi*f_s*time/1000-4*Pi/3);

    end if;

    if time<=160 then

    R1=17;

    elseif time<=930 then

    R1=10;

    elseif time<=1640 then

    R1=6;

    elseif time<=1930 then

    R1=3;

    elseif time<=2430 then

    R1=12.2;

    elseif time<=3300 then

    R1=20.5;

    elseif time<=3560 then

    R1=12.2;

    elseif time<=4060 then

    R1=62.4;

    elseif time<=4600 then

    R1=10.5;

    elseif time<=4901 then

    R1=6;

    elseif time<=5501 then

    R1=100;

    elseif time<=6280 then

    R1=17;

    elseif time<=6690 then

    R1=12.2;

    else

    R1=62.4;

    end if;

    if n>=800 then

    y1=1000;

    elseif n>=0 then

    y1=0;

    else y1=-1000;

    end if;

    if n>=-600 then

    y2=800;

    else y2=-800;

    end if;

    if time<=1930 then

    z=900;

    elseif time<=3560 then

    z=-900;

    elseif time<=4060 then

    z=900;

    elseif time<=4901 then

    z=-900;

    elseif time<=6690 then

    z=900;

    else

    z=-900;

    end if;

    end SACIM;

    simulate(SACIM,startTime=0,stopTime=8000)

    plot(n)

    plot({y1,y2,z})

    plot({i_a,imax,imin})

    plot({Tm,Tmax,Tmin})

  • 相关阅读:
    linux php5.6 安装Redis扩展
    linux php7.2安装扩展memcached
    极简的switch控件
    整理了最近百年的藏历数据,做了个公历藏历映射的小工具
    我是怎么让全国最大的儿童失踪预警平台流量掉底的
    jq的getScript函数不支持chaset?override掉!
    大家好像都比较少关心webcrypto,试试写个简单的sha1/sha256/sha384/sha512实现看看
    惊喜:opera换webkit内核后完美支持SDCH压缩协议
    TCPIP协议实践:wireshark抓包分析之链路层与网络层
    使用unity3d和tensorflow实现基于姿态估计的体感游戏
  • 原文地址:https://www.cnblogs.com/xueyuxiaohu/p/5299111.html
Copyright © 2011-2022 走看看